Iterated Stochastic Integrals in Non Linear Control Theory

  • R. Schott
Part of the Mathematics and Its Applications book series (MAIA, volume 29)


In non linear control theory many systems are governed by an equation of the type \( q(t) = ({A_o} + \sum\limits_1^n {{u_i}(t)} {A_i})q(t) \) (1), where q ∈ IRN and A0, A1,..., An are N×N square matrices, (u1,...,un) is a multidimensional input. We are interested here by the case of a white noise input. The stochastic equation (1) can be solved for each path. The solution has an expression in terms of iterated stochastic integrals of the following type :
$$ {a_n}(t) = \int_0^t {d{B_{{{j_n}}}} \ldots d{B_{{{j_1}}}} = \int_0^t {d{B_{{{j_n}}}}(s)\int_0^s {d{B_{{{j_{{n - 1}}}}}} \ldots d{B_{{{j_1}}}}} } } $$
$$ {B_0}(t) = t,{B_i}(t) = \int_0^t {{u_i}(s)ds} \quad i = 1,2, \ldots, n $$

In order to control the stochastic process solution of (1) we need to etablish some properties of these iterated integrals. In this paper we give an approximation for the density of an(t).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Berthuet. Une loi du logarithme itéré pour certaines intégrales stochastiques. Note aux C.R.A.S., PARIS, t. 289, 17 déc. 1979.Google Scholar
  2. [2]
    P. Crepel et B. Roynette. Une loi du logarithme itéré pour le groupe d’Heisenberg, Z.W. 39 (1977) 217–229.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    K.T. Chen. Iterated path integrals. Bull. Amer. Math. Soc. 83 (1977) 831–879.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    M. Fliess. Stabilité d’un type élémentaire d’équations différentielles stochastiques à bruits vectoriels. Stochastics (1981) vol. 4, p. 205–213.MathSciNetzbMATHGoogle Scholar
  5. [5]
    P. Levy. Wiener’s random function and other Laplacian functions. Proc. 2nd symposium, Beckeley, Probability and statistics (1950), 171–187.Google Scholar
  6. [6]
    R. Schott. Tail probability of some random series. Lecture Notes in mathematics n° 1064, p. 418–421.Google Scholar
  7. [7]
    R. Schott. A law of the iterated logarithm for some stochastic integrals, (to appear in STOCHASTIC PROCESSES AND THEIR APPLICATIONS).Google Scholar
  8. [8]
    R. Schott. Multiple Wiener Chaos (Prépublication Institut E. Cartan, Université Nancy I, 1984).Google Scholar
  9. [9]
    H.J. Sussmann. On generalized inputs and white noise Proc. 15th I.E.E.E. Conf. Decision and control. Clearwater F.L. 1976, p. 809–814.Google Scholar

Copyright information

© D. Reidel Publishing Company 1986

Authors and Affiliations

  • R. Schott
    • 1
  1. 1.U.A. 750 du C.N.R.S., U.E.R. Sciences MathématiquesUniversité de Nancy IVandoeuvre Les NancyFrance

Personalised recommendations