Advertisement

Feedback Linearization Techniques in Robotics and Power Systems

  • Riccardo Marino
Chapter
Part of the Mathematics and Its Applications book series (MAIA, volume 29)

Abstract

A constant matrix, bi constant vector fields, are used to approximate nonlinear systems in neighborhoods of equilibrium points. The original nonlinear model is takeQ into account when a precise control is required and non-linearities significantly affect the desired dynamic behaviour. This is the case for instance in the design of autopilots for highperformance aircrafts ([30], [31]), in space-craft attitude control [14], in the feedback control of high-speed, high-precision robot arms [7], in the stabilization of electric power systems and in the regulation of electric machines [23]. To this purpose adaptive control schemes and more recently geometric nonlinear control techniques have been proposed.

Keywords

Power System Electric Power System Power System Stabilization Nonlinear Control Theory Feedback Linearizable System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Anderson, P. M., Fouad, A. A., ‘Power system control and stability,’ Iowa State University Press, Ames, 1977.Google Scholar
  2. [2]
    Balestrino A., De Maria G., Zinober A.S.I., ‘Nonlinear adaptive model following control,’ Automatica, vol. 20, 5, 559–568, 1984.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Balestrino G., De Maria G., Sciavicco L., ‘Hyperstable adaptive model following control of nonlinear plants,’ System and Control Letters, vol. 1, 232–236, 1982.CrossRefzbMATHGoogle Scholar
  4. [4]
    Balestrino G., De Maria G., Sciavicco L., ‘An adaptive model following control for robotic manipulators,’ Trans, ASME J. Dyn. Syst. Meas. Control, vol. 105, 1983.Google Scholar
  5. [5]
    Boothby W.M., ‘Some comments on global linearization of nonlinear systems,’ System of Control Letters, vol. 4, 143–147, 1984.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Boothby, W. M. ‘Global feedback linearizability of locally linearizable systems,’ this volume.Google Scholar
  7. [7]
    Brady M., Hollerbach J., Johnson T., Lozano-Perez T., Mason M. eds., Robot Motion, Planning and Control. MIT Press, 1982.Google Scholar
  8. [8]
    Brockett, R.W., ‘Feedback invariants for nonlinear systems,’ IFAC Congress, Helsinki, 1115–1120, 1978.Google Scholar
  9. [9]
    Cesareo G., Marino R., ‘Nonlinear control theory and symbolic algebraic manipulation,’ MTNS ’83, Beer Sheva, Israel; Lecture Notes in Control and Inf. Sci., no, 58, 725–740, Springer Verlag, 1984.Google Scholar
  10. [10]
    Cesareo G., Marino R., ‘On the application of computer algebra to nonlinear control theory,’ EUROSAM Conf. Cambridge U.K.: Lecture Notes in Comp. Sci., no. 174, 35–46, Springer Verlag, 1984.Google Scholar
  11. [11]
    Cesareo G., Marino R., ‘The use of symbolic computation for power system stabilization: an example of computer-aided design,’ INRIA Conf, Nice ’84; Lecture Notes in Control and Inf. Sci., vol. 63, 598–611, Springer Verlag, 1984.Google Scholar
  12. [12]
    Cheng, D., Tarn T.J., Isidori A., ‘Global feedback linearization of nonlinear systems,’ 23rd CDD Conference, Las Vegas, 74–83, 1984.Google Scholar
  13. [13]
    Dayawansa, W., Boothby, W. M., Elliott, D. L., ‘Global state and feedback equivalence of nonlinear systems,’ System and Control Letters, vol. 6, 229–234, 1985.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Dwyer, T. A. W., ‘Exact nonlinear control of large angle rotational maneuvers,’ IEEE Trans. Autom. Control. Vol. 29, 9, 769–774, 1984.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    Hunt L.R., Su R., Meyer G., ‘Design for multi-input nonlinear systems,’ Diff, Geo, Control Theory, Brockett R., Millmann R., Sussmann H. Eds., 268–298, Birkhäuser, 1983,Google Scholar
  16. [16]
    Hunt L.R., Su R., Meyer G., ‘Global transformations of nonlinear systems,’ IEEE Trans. Autom. Control, vol. AC-27, 1982.Google Scholar
  17. [17]
    Krener, A. J., ‘On the equivalence of control systems and linearization of nonlinear systems,’ SIAM J. Control and Opt., vol. 11, 670–676, 1973.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    Krener A.J., Isidori A., Respondek W., ‘Partial and robot linearization by feedback,’ Proc. 22nd IEEE Conf. on Decision and Control, 126–130, 1983.Google Scholar
  19. [19]
    Krener, A. J., ‘Approximate linearization by state feedback and coordinate change,’ System and Control Letters, vol. 5, 181–185, 1984.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    Jakubczyk B., Respondek W., ‘On linearization of control systems,’ Bull. Acad. Pol. Sci., Ser. Sci. Math., vol. 28, 517–522, 1980.MathSciNetzbMATHGoogle Scholar
  21. [21]
    Irving, E., Barrett, J. P., Charcossey, C., Monville, J., ‘Improving power network stability and unit stress with adaptive generator control,’ Automatica, vol. 15, 31–46, 1979.CrossRefzbMATHGoogle Scholar
  22. [22]
    Isidori, A., Krener, A. J., Monaco, S., Gori-Giorgi, C., ‘Nonlinear decoupling via feedback: a differential geometric approach,’ IEEE Trans, Autom. Control, vol. 26, 331–345, 1981.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    Marino R., ‘Feedback equivalence of nonlinear systems with applications to power system equations,’ Doctoral Dissertation, Washington University, St. Louis, MO, 1982.Google Scholar
  24. [24]
    Marino R., Nicosia S., ‘Linear model following control and feedback equivalence to linear controllable systems,’ Int. J. of Control, vol. 39, 3, 473–485, 1984.CrossRefzbMATHGoogle Scholar
  25. [25]
    Marino R., ‘On the stabilization of power systems with a reduced number of controls,’ INRIA Conf. Nice ’84; Lecture Notes in Control and Inf. Sci., vol. 62, 259–274, Springer Verlag, 1984.Google Scholar
  26. [26]
    Marino, R., “On the largest feedback linearizable subsystem,” to appear in System and Control Letters.Google Scholar
  27. [27]
    Marino, R., ‘An example of nonlinear regulator,’ IEEE Trans. Autom. Control, vol. 29, 3, 276–279, 1984.CrossRefzbMATHGoogle Scholar
  28. [28]
    Marino, R., Boothby, W. M., Elliott, D. L., ‘Geometric properties of linearizable control systems,’ Mathematical Systems Theory, vol. 18, 97–123, 1985.MathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    Marino, R., Ilic-Spong, M., ‘Stabilization and voltage regulation of electric power systems with (P,Q) load buses preserved,’ Proc. Conference on Decision and Control, Fort Lauderdale, Florida, 1985.Google Scholar
  30. [30]
    Meyer G., Cicolani L., ‘Applications of nonlinear system inverses to automatic flight control design-system concepts and flight evaluations,’ Agardograph 251 on Theory and Applications of Opt. Control Aero. Systems, P. Kant ed., 1980.Google Scholar
  31. [31]
    Meyer, G., Su, R., Hunt, L. R., “Application of nonlinear transformations to automatic flight control,” Automatica, vol. 20, 1, 103–107, 1984.CrossRefzbMATHGoogle Scholar
  32. [32]
    Nicosia S., Tomei P., ‘Model reference adaptive control algorithms for industrial robots,’ Automatica, 20, 5, 635–644, 1984.CrossRefzbMATHGoogle Scholar
  33. [33]
    Respondek, W., ‘Global aspects of linearization equivalence to polynomial forms and decomposition of nonlinear control systems,’ this volume.Google Scholar
  34. [34]
    Respondek W., to appear in Proc. MTNS ’85 Conference, Stockholm, June 85, C. Byrnes and A. Lindquist eds., Elsevier, Amsterdam.Google Scholar
  35. [35]
    Su, R., ‘On the linear equivalence of nonlinear systems,’ System and Control Letters, vol. 2, 48–52, 1982.CrossRefzbMATHGoogle Scholar
  36. [36]
    Su, R., Meyer, G., Hunt, L. R., ‘Robustness in nonlinear control,’ Differential Geometric Control Theory Conference, Birkhäuser, Boston, R. W. Brockett, R. S. Milemann, H. J. Sussmann, Eds., vol. 27, 316–337, 1983.Google Scholar
  37. [37]
    Utkin U.I., Sliding Modes and their Applications in Variable Structure Systems. MIR Moscow (English translation), 1978.Google Scholar
  38. [38]
    Van der Schaft, A. J., ‘Linearization and input-output decoupling for general nonlinear systems,’ System & Control Letters, vol. 5, 27–33, 1984.CrossRefzbMATHGoogle Scholar
  39. [39]
    Young K.K.D., ‘Design of variable structure model following control systems,’ IEEE Trans. Autom. Control, vol. AC-23, 1079–1085, 1978.CrossRefGoogle Scholar
  40. [40]
    Zaborszky, J., Whang, K. W., Prasad, K. V., Katz, I. N., ‘Local feedback stabilization of large interconnected power systems in emergencies,’ Automatica, no. 17, vol. 5, 673–686, 1981.CrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company 1986

Authors and Affiliations

  • Riccardo Marino
    • 1
  1. 1.Dipartimento di Ingegneria ElettronicaSeconda Università di RomaRomaItaly

Personalised recommendations