Advertisement

Identification of Different Discrete Models of Continuous Non-Linear Systems. Application to Two Industrial Pilot Plants.

  • Dadugineto
  • C. Darmet
  • J. Dufour
  • G. Gilles
  • B. Neyran
  • D. Thomasset
Chapter
  • 417 Downloads
Part of the Mathematics and Its Applications book series (MAIA, volume 29)

Abstract

The continuous industrial plants dynamically working inside a large operating range involve non-linear phenomena that mostly cannot be suitably approached by linear models. In order to describe their behaviour, it is then necessary to use non linear models and/or variable parameter models. The control of such systems can be managed from adaptive methods or multi-model techniques but it may be preferable to try to find a global non-linear model correctly describing the system behaviour in all its operating conditions and a unique control law. Moreover, the goal being the control by means of one or several digital processors, it is necessary to build a discrete non-linear and/or time-varying parameter model.

Keywords

Discrete Model Step Response Machine Speed Bilinear System Paper Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    DANG VAN MIEN H., NORMAND-CYROT D., ‘Non-linear stateaffine identification methods; applications to electrical power plants’, Automatica, Vol. 20, N° 2, p. 175–188, 1984.CrossRefGoogle Scholar
  2. [2]
    FLIESS M., NORMAND-CYROT D., ‘Vers une approche algébrique des systèmes non-linéaires en temps discret’, Analysis and Optimization of systems (A. Bensoussan et J.L. Lions, ed.), Versailles, Lectures Notes in Control and Information Sciences, Vol. 28, Springer Verlag, Berlin, p. 594–609, 1980.Google Scholar
  3. [3]
    NEYRAN B., SAADE-CASTRO J., THOMASSET D., REYNAUD R., ‘Modélisation dynamique non-linéaire d’un procédé chimique de neutralisation’, Congrès SEE, Nice, 1984.Google Scholar
  4. [4]
    HAMMARSTROM L.G., GROS K.S., ‘Adaptation of optimal control theory to systems with time-delays’, International Journal of Control, Vol. 32, N° 2, p. 329–357, 1980.MathSciNetCrossRefGoogle Scholar
  5. [5]
    THOMASSET D., ‘Représentation d’état discrète d’un système multivariable retardé généralisé’, RAIRO Systems Analysis and Control, Vol 17, N° 1, p 23–38, 1983.MathSciNetzbMATHGoogle Scholar
  6. [6]
    KARAMAN V., FRICK P., MOHLER R., ‘Bilinear identification by Walsh functions’, I.E.E.E. Transactions on Automatic Control, Vol. 23, N° 4, p. 709–713, 1978.CrossRefGoogle Scholar
  7. [7]
    DUFOUR J., THOMASSET D., ‘Definition and synthesis of state-affine control algorithms: application to a varylinear system’, Int. Conference on Computers, Systems and Signal Processing, Bangalore, India, 1984.Google Scholar
  8. [8]
    THOMASSET D., NEYRAN B., ‘Identification and control of non stationary delayed systems using state-affine representation’, to be published in International Journal of Control Google Scholar
  9. [9]
    GILLES G., LAGGOUNE N., ‘Digital control of bilinear continuous processes. Application to a chemical pilot plant’, IF AC Symposium on Digital computer applications to process control, Vienna, Austria, 1985.Google Scholar
  10. [10]
    CLARKE D.W., ‘Generalized least squares estimation of the parameters of a dynamic model’, IFAC Symposium, Prague, paper 3.17, 1967.Google Scholar

Copyright information

© D. Reidel Publishing Company 1986

Authors and Affiliations

  • Dadugineto
  • C. Darmet
    • 1
  • J. Dufour
    • 2
  • G. Gilles
    • 1
  • B. Neyran
    • 3
  • D. Thomasset
    • 3
  1. 1.Laboratoire d’AutomatiqueUniversité Lyon 1France
  2. 2.Laboratoire d’Automatique et de Microinformatique industrielleUniversité de SavoieAnnecyFrance
  3. 3.Laboratoire d’Energétique et d’AutomatiqueINSA de LyonFrance

Personalised recommendations