Bang-Bang Solutions for a Class of Problems Arising in Thermal Control

  • Safya Belghith
  • Françoise Lamnabhi-Lagarrigue
  • Marie-Minerve Rosset
Part of the Mathematics and Its Applications book series (MAIA, volume 29)


The purpose of this paper is to show that a component of the control arising in building energy management is bang-bang. The switching points of this component can then be computed by a heuristic method using results from linear-quadratic optimal control. This solves a new class of nonlinear optimal control problems.


Optimal Control Problem Switching Point Concrete Wall Volterra Kernel Auxiliary Heater 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. ATHANS AND P. FALB, “Optimal Control”, Mac Graw Hill, NY, 1966.zbMATHGoogle Scholar
  2. [2]
    C. BENARD, “Optimisation de la représentation réduite d’une paroi thermique”, submitted to Int. J. of. Heat and Mass Transfer.Google Scholar
  3. [3]
    E. BOILEAU, C. BENARD AND B. GUERRIER, “Comparaison de différentes approximations des fonctions de transfert d’une paroi thermique” Revue Générale de Thermique, 257, 1983, p. 391–404.Google Scholar
  4. [4]
    M. FLIESS, “Lie brackets and optimal non linear feedback regulation” Proc IXth IFAC World Congress, Budapest, July 1984.Google Scholar
  5. [5]
    R. GABASOV AND F.M. KIRILLOVA, “High order necessary conditions for optimality.” SIAM J. Control, 10, 1972, pp. 127–168.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    B. GUERRIER, “Modélisation stochastique appliquée à l’étude des entrées-sorties de systèmes thermiques: cas des composants linéaires de l’habitat solaire passif”, thèse Doct. Ing., Université Paris-Sud, Orsay, 1981.Google Scholar
  7. [7]
    A.J. KRENER, “The High Order Maximal Principle and its application to singular extremals”, SIAM J. Contr. Optimization, 15, 1977, p. 256–293.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    F. LAMNABHI-LAGARRIGUE, “Séries de Volterra et Commande Optimale Singulière”, thèse d’Etat, Université Paris-Sud, Orsay, 1985.Google Scholar
  9. [9]
    L. PONTRYAGIN, V. BOLTYANSKII, R. GAMKRELIDZE, E. MISCHTCHENKO, The mathematical theory of Optimal processes, NY, John Wiley, 1962.zbMATHGoogle Scholar
  10. [10]
    H.J SUSSMANN, “A Bang-Bang theorem with bounds on the number of switchings”, SIAM J. Contr. Optimization, 17, 1979, p. 629–651.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company 1986

Authors and Affiliations

  • Safya Belghith
    • 1
    • 2
  • Françoise Lamnabhi-Lagarrigue
    • 2
  • Marie-Minerve Rosset
    • 3
  1. 1.Ecole Nationale d’Ingénieurs de TunisTunis BelvédèreTunisie
  2. 2.Laboratoire des Signaux et SystèmesCNRS-ESEGif-Sur-YvetteFrance
  3. 3.Laboratoire des Fluides et Thermosystèmes en Régime Instationnaire, UA CNRS 871Campus UniversitaireOrsayFrance

Personalised recommendations