The Uncertainty Frontier as a Global Approach to the Efficient Stabilisation of Economic Systems: Experiments with the Micro-DMS Model

  • M. Deleau
  • C. Le Van
  • P. Malgrange
Part of the Advanced Studies in Theoretical and Applied Econometrics book series (ASTA, volume 3)


The application of optimisation methods to macroeconometric models is now current practice. In recent years, stress has been put on the potentialities of such methods for purposes of analysis (see Chow (1975)). In a previous article, we proposed some analytical results about the global’ stabilisation’ properties of a given economic model (Deleau and Malgrange (1979)). Our approach applies to a linear (or linearised) system with implicit) quadratic objective functions. It uses the concept of ‘uncertainty frontier’, which characterises ‘efficient’ stabilisations and gives a synthetic expression of the tradeoffs between objectives (e.g. how much do you ‘destabilise’ prices in the process of stabilising unemployment.


Capacity Utilisation Uncontrolled Variable Foreign Demand Quadratic Objective Function Efficient Stabilisation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brillet, J.L. (1982), ‘L’Equation de Phillips: comparaison sur une maquette de plusieurs formulations alternatives’, Working Paper, INSEE, Service des Programmes.Google Scholar
  2. Bureau, D. and M. Norotte (1982), ‘Quand l’analyse des données s’intéresse à la politique économique’, Working Paper 79 C 32, Direction de la Prévision.Google Scholar
  3. Bureau, D. and M. Norotte (1983), ‘De METRIC à DMS’, Working Paper 107 C 33, Direction de la Prévision.Google Scholar
  4. Chow, G. (1975), Analysis and Control of Dynamic Economic Systems, John Wiley, New York.Google Scholar
  5. Courbis, R. (1980), ‘Une reformulation dynamique de la théorie des économies concurrencées’, Economie Appliquée, Vol. 33, no. 1.Google Scholar
  6. Deleau, M. and P. Malgrange (1972), ‘Information et politiques dynamiques contraléatoires’, Annales de l’INSEE, No. 9.Google Scholar
  7. Deleau, M. and P. Malgrange (1979), ‘Efficient stabilisation of economic systems: some global analytical results for the linear quadratic case’, European Economic Review, No. 12.Google Scholar
  8. Deleau, M., P. Malgrange and P.A. Muet (1981), ‘Une maquette représentative des modèles économiques’, Annales de l’INSEE, No. 42.Google Scholar
  9. Deleau, M., P. Malgrange and P.A. Muet (1982), ‘A study of short run and long run properties of macroeconometric dynamic models by means of an aggregative core model’, in: P. Malgrange and P.A. Muet (eds.), Contemporary Macroeconomic Modelling, Basil Blackwell, Oxford (forthcoming).Google Scholar
  10. Fair, R. (1980), ‘Estimating the expected predictive accuracy of econometric models’, International Economic Review, 21-22.Google Scholar
  11. Fouquet, D., J.M. Charpin, H. Guillaume, P.A. Muet and D. Vallet (1978), ‘Le modèle DMS’, Collections de l’INSEE, Serie C.Google Scholar
  12. Gauron, A. and J. Maurice (1980), ‘Des politiques économiques pour le Ville Plan: exploration de l’ensemble des possibles’, Revue Economique, 31-35.Google Scholar
  13. Hughes Hallett, A.J. and H.J.B. Rees (1983), Quantitative Economic Policies and Interactive Planning, Cambridge University Press, Cambridge.Google Scholar
  14. Le Van, C. (1983), ‘Etude de la stabilité du sentier d’équilibre d’une maquette d’économie ouverte’, Annales de l’INSEE, No. 50.Google Scholar
  15. Malgrange, P. (1982),’ steady growth path in a short run dynamic model: The case of the French quarterly model METRIC, Working-Paper, CEPREMAP.Google Scholar
  16. Marschak, J. and R. Radner (1972), Economic Theory of Teams, Yale University Press, New Haven.Google Scholar
  17. Taylor, J. (1979), ‘Estimation and control of a macroeconomic model with rational expectations’, Econometrica, 47-45.Google Scholar
  18. Turnovsky, S. (1974), ‘The stability properties of optimal economic policies’, American Economic Review, 44-41.Google Scholar
  19. Turnovsky, S. (1977), ‘Optimal control of linear systems with stochastic coefficients and additive disturbances’, in: J. Pitchford and S. Turnovsky (eds.), Applications of Control Theory to Economic Analysis, North-Holland, Amsterdam.Google Scholar

Copyright information

© Martinus Nijhoff Publishers. Dordrecht/Boston/Lancaster 1984

Authors and Affiliations

  • M. Deleau
    • 1
  • C. Le Van
    • 2
  • P. Malgrange
    • 2
  1. 1.Ministry of Economics and FinanceParisFrance
  2. 2.CNRSCEPREMAPParisFrance

Personalised recommendations