Advertisement

Glass fibres

  • V. E. Khazanov
  • Yu. I. Kolesov
  • N. N. Trofimov
Chapter
Part of the Soviet Advanced Composites Technology Series book series (SACTS, volume 5)

Abstract

Glass fibres are very important new synthetic materials. They are widely used in various fields of engineering because of their useful properties, i.e. incombustibility, corrosion resistance, high strength at low densities, good thermal and sound insulation and their electrical properties. There is also a practically inexhaustible supply of raw material for their production.

Keywords

Glass Fibre Weft Yarn Quartz Fibre Warp Yarn Finish Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Text Organ (1972), 43 (6), 78.Google Scholar
  2. 2.
    Text Organ (1977), 48 (6), 76.Google Scholar
  3. 3.
    Text Organ (1988), 59 (6), 112–15.Google Scholar
  4. 4.
    Kolesov, Yu. I. (1973) Basic requirements on the technology of production of glass beads, in Steklyannoe Volokno i Stekloplastiki, NIITEKHIM, Moscow, No. 4, pp. 1–8.Google Scholar
  5. 5.
    Loewenstein, K. L. (1983) Manufacturing Technology for Continuous Glass Fibres. Glass Science and Technology, Vol. 6, Elsevier, Amsterdam.Google Scholar
  6. 6.
    Shkolnikov, A. Ya. (1959) Glass Fibre, BNTI BNIISPV, Moscow.Google Scholar
  7. 7.
    Chernyak, M. G. (1965) Continuous Glass Fibre. Principles of Technology and Properties, Khimiya, Moscow.Google Scholar
  8. 8a.
    Ansems, R. I. and Bergeron, C. G. (1975) Devitrification in fibreglass compositions. Glass Industry, 56 (3), 16,18, 22;Google Scholar
  9. 8b.
    Ansems, R. I. and Bergeron, C. G. (1975) Devitrification in fibreglass compositions. Glass Industry, 56 (4), 24–6.Google Scholar
  10. 9.
    Tichy, P. (1968) Beitrag zur Eigenschafus- und Qualitatsauswertung der Glaser fur die Glasseidenerzeugung, Silicattechnik, 19 (10), 314.Google Scholar
  11. 10.
    Matveev, M. A., Maso, E. E. and Volchek, L. K. (1964) Influence of additives on crystallization of boron-free, alkali-free strontium-containing glasses. Glass-Like Condition (Minsk), 3 (4), 85.Google Scholar
  12. 11.
    Aslanova, M. S., Kolesov, Yu. I., Khazanov, V. E. et al. (1979) in Glass Fibres (ed. M. S. Aslanova), Khimiya, Moscow.Google Scholar
  13. 12.
    Volskaya, S. Z., Zaitzeva, S. A. and Gruzdeva, N. P. (1975) Influence of composition on glass-forming and crystallizability of E type glass, in Technological and Physical-Technical Properties and Applications of Glass Fibre Materials. VNIISPV, Moscow, pp. 12–15.Google Scholar
  14. 13.
    Eitel, V. (1962) Physical Chemistry of Silicates, Izdatinlit, Moscow.Google Scholar
  15. 14.
    Kolesov, Yu. I. (1971) Alkaline glass is the cheapest advanced material for the production of glass fibre materials, in Steklyannoe Volokno i Stekloplastiki, NIITEKHIM, Moscow, No. 3, pp. 17–23.Google Scholar
  16. 15.
    Larson, C. E. (1986) How lithium benefits production of glasses. Glass Industry, (13), 14–16.Google Scholar
  17. 16.
    Kingsnorth, D. J. (1988) Lithium minerals in glass. New directions. Industrial Minerals, 244, 49.Google Scholar
  18. 17.
    Volskaya, S. Z. and Sosnina, D. E. (1975) Influence of variations of glass composition within the limits of tolerances TY 6-11-76-72 on basic production properties, in Steklyannoe Volokno i Stekloplastiki, NIITEKHIM, Moscow, No. 4, pp. 1–6.Google Scholar
  19. 18.
    Appen, A. A., Shishkov, K. A. and Kayalova, S. S. (1952) Dependence of surface tension of combined silicate melts on their composition. Zhurnal Fizicheskoi Khimii, 26 (8), 1131.Google Scholar
  20. 19.
    Rubenstein, C. (1964) Factors for the calculation of the surface tension of glasses. Glass Technology, 5 (1), 36.Google Scholar
  21. 20.
    Nagulevich, K. V. and Kolesov, Yu. I. (1968) Analysis of gases dissolved in the alkali-free aluminoborosilicate glass. Steklo i Keramika, (5), 23.Google Scholar
  22. 21.
    Nagulevich, K. V. and Kolesov, Yu. I. (1968) Influence of sulphates and nitrates of alkaline-earth metals on gas content in alkali-free aluminoborosilicate glass. Steklo i Keramika, 6, 15.Google Scholar
  23. 22.
    Pankova, N. A. and Levitin, L. Ya. (1971) Thermodynamic analysis of the processes of gas exchange of glass mass with the gas medium of glass-making furnaces, in Steklo, GIS, Stroyizdat, Moscow, No. 3, pp. 12–19.Google Scholar
  24. 23.
    Nagulevich, K. V. and Kolesov, Yu. I. (1970) Regulation of gas content and foaming temperature of glass in the production of glass fibre. Steklo i Keramika, (11), 23.Google Scholar
  25. 24.
    Boffe, M., Delzant, G., Pecriaux and Plumat, E. (1963) Diffusion des gaz dans le verre. Silikates Industriels, 28, 277.Google Scholar
  26. 25.
    Scholze, H. (1963) Gases and water in glass. Silicates Industries, 2, 277.Google Scholar
  27. 26.
    Budd, I. and Exelby, V. (1962) The formation of gas bubbles in glass at high temperatures. Glass Technology, 3 (4), 124.Google Scholar
  28. 27.
    Sholse, H. and Franz, H. (1963) Die loslichkeit von H20-Dampf in Glasschmelzen verschiedender basizitat. Glastechnische Berichte, 36 (9), 347.Google Scholar
  29. 28.
    Apak, C. and Cable, M. (1977) Effect of transition metal oxides on the refining behaviour of soda-lime-silica glasses, in Proceedings of the 11th International Congress on Glass, Prague, Vol. 4, pp. 167–76.Google Scholar
  30. 29.
    Nagulevich, K. V., Smirnov, I. K. and Kolesov, Yu. I. (1969) Influence of gas content in glass on the process of glass fibre production, in Steklyannoe Volokno i Stekloplastiki, NIITEKHIM, Moscow, No. 4, pp. 15–22.Google Scholar
  31. 30.
    Smirnov, I. K., Nagulevich, K. V. and Kolesov Yu. I. (1970) Influence of technique on accuracy of analysis of gases dissolved in aluminoborosilicate glass, in Steklyannoe Volokno i Stekloplastiki, NIITEKHIM, Moscow, No. 3, pp. 5–12.Google Scholar
  32. 31.
    Shelubsky, V. I. (1989) Uniformity of glass and method of its determination, in Proceedings of the 15th International Congress on Glass, Leningrad, Vol. 3a, pp. 35–8.Google Scholar
  33. 32.
    Shelubsky, V. I., Zadorozhnaya, T. D. and Elchaninova, L. F. (1986) Method of determination of non-uniformity of glass beads. Steklo i Keramika, (12), 12.Google Scholar
  34. 33.
    Shelubsky, V. I., Zadorozhnaya, T. D. and Elchaninova, L. F. (1987) Control of glass non-uniformity in the production of glass fibre. Steklo i Keramika, (3), 11–12.Google Scholar
  35. 34.
    Denniston, D. W. (1963) Method and apparatus for forming fibres, US Patent 3082614, Class 65–3.Google Scholar
  36. 35.
    Day, F. and Froberg, M. L. (1966) Method and apparatus for processing of filament-forming mineral materials. US Patent 3406021, Class 65–1.Google Scholar
  37. 36.
    Shkolnikov, A. Ya., Polik, B. M., Kocharov, E. P. and Nigin, E. R. (1969) Steklyannoe Shtapelnoye Volokno, Khimiya, Moscow.Google Scholar
  38. 37.
    Shkolnikov, Ya. A. (1964) Calculation of technological parameters of the processes of production of glass fibre. Steklo i Keramika, (7), 21–8.Google Scholar
  39. 38.
    Chernyak, M. G. and Blokh, K. I. (1959) Temperature region of the ‘cone’ of a glass fibre. Works of BNIISPV, Collection 6, Gazlegprom, Moscow, No. 6, pp. 33–8.Google Scholar
  40. 39.
    Khodakovskii, M. D., Kutukov, S. S. and Aslanova, M. S. (1969) Influence of physical and chemical properties of glass on stability of the forming process of continuous glass fibre, in Structure, Content, Properties and Forming of Glass Fibre (ed. M. S. Aslanova), Part II, VNIISPV, Moscow, p. 6.Google Scholar
  41. 40.
    Aslanova, M. S and Khazanov, V. E. (1968) Influence of speed of cooling on strength of quartz and glass fibres. Steklo i Keramika, (9), 1.Google Scholar
  42. 41.
    Aslanova, M. S. and Khazanov, V. E. (1968) Determination of cooling rate of quartz and glass fibres, in Methods and Apparatus for Examination and Control of Some Properties of Glass Fibre Materials, VNIISPV, Moscow, pp. 4–19.Google Scholar
  43. 42.
    Anderson, O. (1958) Cooling time of high strength glass fibres. Journal of Applied Physics, 29 (1), 9–12.CrossRefGoogle Scholar
  44. 43.
    Paek, U. C. and Kurkjian, C. R. (1975) Calculation of cooling rate and induced stresses in drawing of optical fibres. Journal of the American Ceramics Society, 58 (7/8), 330–5.CrossRefGoogle Scholar
  45. 44.
    Manfre, G. (1971) Two-dimensional analysis of temperature profile in continuous glass fibre spinning, in Proceedings of the 9th International Congress on Glass, Versailles, pp. 1015–22.Google Scholar
  46. 45.
    Glicksman, L. (1968) The cooling of glass fibres. Glass Technology, 9 (5), 131–8.Google Scholar
  47. 46.
    Khodakovskii, M. D., Influence of the forming process on differences in thickness of continuous glass fibres. Candidate Thesis, MKHTI, Moscow.Google Scholar
  48. 47.
    Gliksman, L. R. (1968) The dynamics of a heated free jet of variable viscosity liquid at low Reynolds numbers. Journal of Basic Engineering, (3), 343–54.Google Scholar
  49. 48.
    Otto, W. H. (1955) Relationship of tensile strength of glass fibres to diameter. Journal of the American Ceramics Society, 38 (3), 122–4.CrossRefGoogle Scholar
  50. 49.
    Bateson, S. (1958) Critical study of the optical and mechanical properties of glass fibres. Journal of Applied Physics, 29 (1), 13–21.CrossRefGoogle Scholar
  51. 50.
    Bartenev, G. M. (1966) Structure and Mechanical Properties of Inorganic Glasses, Stroyizdat, Moscow.Google Scholar
  52. 51.
    Kay, D. and Laby T. (1962) Tables of Physical and Chemical Constants. Fizmatgiz, Moscow.Google Scholar
  53. 52.
    Aslanova, M. S. and Khazanov, V. E. (1966) The influence of quartz glass defects on glass fibre properties, in Proceedings of the Annual Symposium on Defects in Glass, Tokyo-Kyoto, p. 215.Google Scholar
  54. 53.
    Aslanova, M. S. and Khazanov, V. E. (1965) Effect of high strength of glass and quartz fibres in liquid nitrogen at t = −196 °C. Doklady AN SSSR, 164 (6), 1277.Google Scholar
  55. 54.
    Aslanova, M. S. and Khazanov, V. E. (1967) Influence of quartz glass defects and surface defects of quartz fibre forming on their properties. Steklo i Keramika, (1), 22.Google Scholar
  56. 55.
    Aslanova, M. S. and Khazanov, V. E. (1977) Formation de fibres de verres continues a haute resis et fontes agant des proprietes thermophysiques particulieres. Verres Réfractaires, 31 (6), 681–6.Google Scholar
  57. 56.
    Bacon, I. F. (1973) High modulus high temperature glass fibres. Applied Polymer Symposium, 21, 179–200.Google Scholar
  58. 57.
    Burgman, J. A. (1970) Liquid glass jets in the forming of continuous glass fibres. Glass Technology, 11 (4), 110–16.Google Scholar
  59. 58.
    Kolesov, Yu. I. and Kolesova, A. I. (1973) Influence of granularity of quartz sand on the production of aluminoborosilicate alkali-free glass, in Technology, Physical-Technical Properties and Applications of Glass Fibre Materials, VNIISPV, Moscow, pp. 3–11.Google Scholar
  60. 59.
    Kolesov, Yu. I. (1976) Possibility of application of kaolin in production of glass fibre, Steklyannoe Volokno i Stekloplastiki, NIITEKHIM, Moscow, No. 10, pp. 1–6.Google Scholar
  61. 60.
    Artamonova, M. V., Aslanova, M. S., Buzhinsky, I. M. et al. (1983) in Chemical Technology of Glass (ed. N. M. Pavlushin), Stroyizdat, Moscow.Google Scholar
  62. 61.
    Badalova, E. I., Bardushkina, V. P., Voitzekhovich, N. Ya. et al. (1973) in Production of Glass Fibres and Fabrics (ed. M. D. Khodakovsky), Khimiya, Moscow, p. 40.Google Scholar
  63. 62.
    Gorobets, V. N. and Gorobets, L. G. (1977) New Trend in Milling, Nedra, Moscow.Google Scholar
  64. 63.
    Goldenberg, L. G. (1971) Heat Exchange and Servicing of Glass-Making Furnaces in the Production of Glass Fibres, OKB ETKHIM, Moscow, p. 43.Google Scholar
  65. 64.
    Kolesov, Yu. I., Malashkina, T. G. and Khvoinov, G. N. (1979) Corrosion of refractory materials in glasses for the production of fibres at high temperatures, in Physical and Chemical Properties and Equipment for Glass Fibre Production (ed. Yu. I. Kolesov), VNIISPV, Moscow, pp. 34–42.Google Scholar
  66. 65.
    Degtyareva, E. V. and Orlova I. G. (1977) New refractory materials for glass-making bath furnaces for production of glass fibre, Ogneupory, (10), 57–61.Google Scholar
  67. 66.
    Orlova, I. G. and Gudikina, A. (1979) Development of corundum-zirconium refractory materials of grain structure. Ogneupory, (3), 40–5.Google Scholar
  68. 67.
    Popov, O. N. and Frolov, V. P. (1984) Service of melt-casted chromium aluminium zirconium refractory materials in industrial glass-making furnaces, in Studies of Refractory Materials for Glass-Making Furnaces, GIS, Moscow, p. 59.Google Scholar
  69. 68.
    Belousova, L. S., Gerdt, K. H., Otto, H. and Nusle, G. (1978) Feeder to the plant for production of fibres from inorganic materials. Author’s Certificate of the USSR, 64 053, ICI C03 B 37/02.Google Scholar
  70. 69.
    Muller, F. and Zuptner, H. (1986) VEB Warmetechniches Institut der Glasindustrie Iena, Einsatz von Flachflammenbrennern zu Beheizung von Speisern und Kanalen. Silikattechnik, (1), 18–19.Google Scholar
  71. 70.
    Belousova, L. S., Kutukov, S. S., Pistzov, Yu. N., Tyurin, A. I. et al. (1972) Production channel of a bath glass-making furnace. Author’s Certificate of the USSR, 336 283, ICI C03 B 7/00.Google Scholar
  72. 71.
    Hoz, I. (1974) VEB Kombinat Lausitzer Glass Weibwasser OL. Entwiklungs-stand und probleme bei der Speiserbeheizung. Silikattechnik, (9), 310–14.Google Scholar
  73. 72.
    Belousova, L. S., Chernyakov, R. G., Lebedev, I. N. et al. (1981) Electric feeder. Author’s Certificate of the USSR 810 622, ICI C03 B 7/02.Google Scholar
  74. 73.
    Chernyakov, R. G., Belousova, L. S., Zaitseva, S. A. et al. (1989) One-phase technology for production of continuous glass fibres of glass of alkali-containing composition using an electric feeder system, in Proceedings of the 15th International Congress on Glass, Leningrad, Vol. 3B, pp. 274–7.Google Scholar
  75. 74.
    Tarasova, A. P., Zdanova, N. P., Chernyakov, R. G. et al., Refractory concrete mixture. Author’s Certificate of the USSR 1 495 326, ICI C04 B 28/06.Google Scholar
  76. 75a.
    Yantzev, P. G., Chernyakov, R. G. et al. (1968/1969) Plant for glass mass supply. Author’s Certificate of the USSR 132 940, Class 32a, 37/00;Google Scholar
  77. 75b.
    Yantzev, P. G., Chernyakov, R. G. et al. (1968/1969) Plant for glass mass supply. UK Patent 12 184 814, ICI C03 B 7/00 37/02;Google Scholar
  78. 75c.
    Yantzev, P. G., Chernyakov, R. G. et al. (1968/1969) Plant for glass mass supply. US Patent 3 589 879.Google Scholar
  79. 76.
    Lecron, I. and Manera, M., Vetrotex Saint Cobain chambery, France. Nouvesu procede de fibrage continu de fibres de verres, in Proceedings of the 13th Congress International de Verre, p. 84.Google Scholar
  80. 77.
    Shirokova, N. A. et al. (1988) New warping machine for preparation of warps of glass threads, in New Technology for Production of Electrically Insulating Fabrics. NPO Stekloplastic, Moscow, p. 31.Google Scholar
  81. 78.
    Zhivetin, V. V. (1988) Exhibition Itma-87. Preparatory textile equipment. Tekstilnaya Promyshlennost, (3), 45.Google Scholar
  82. 79.
    Raykov, R. V. and Shirokova, N. A. (1976) Determination of the slope of the cone generator and the reciprocal motion of the support in cylinder warping machines for glass fibre warping, in Steklyannoe Volokno i Stekloplastiki, NIITEKHIM, Moscow, No. 7, pp. 8–11.Google Scholar
  83. 80.
    Lyusben, K. (1988) Preparation of warps of synthetic fibres. Industrial Textiles, (1189), 615.Google Scholar
  84. 81.
    Sizing machine. Application 3 627 390, FRG ICI F26 B13/10, D06 B15/00 (1988).Google Scholar
  85. 82.
    Sizing device. Application 3 602 968, FRG ICI D06 B 3/04, D06 B 19/00 (1987).Google Scholar
  86. 83.
    Kotenin, V. P. (1975) Interarrangement of threads in the forming zone of fabrics. Tekstilnaya Promyshlennost, (1), 43–4.Google Scholar
  87. 84.
    Kotenin, V. P. et al. (1980) Inspection-measuring machine for glass fibre fabrics. Tekstilnaya Promyshlennost, (6), 53.Google Scholar
  88. 85.
    Semenov, M. N., Malkov, A. P., Gorokhov, Yu. M. et al. (1979) Inspection-measuring machine. Author’s Certificate of the USSR 666 226, ICI D 04H1/00, 0506.79.Google Scholar
  89. 86.
    Ananyev, N. N. et al. (1976) New pneumatic loom P-125-8. Tekstilnaya Promyshlennost, (8), 52–3.Google Scholar
  90. 87.
    Vaculenko, E. T. et al. (1976) Knitting-stitching reinforcing materials for the production of glass-reinforced plastics, in Steklyannoe Volokno i Stekloplastiki, NIITEKHIM, Moscow, No. 7, pp. 1–8.Google Scholar
  91. 88.
    Khostegyan, S. A., Perepletchikov, S. V., Dobroskokin, N. V. et al. (1981) Method of manufacturing of non-woven material. Author’s Certificate of the USSR. 857 316. ICI D 04H 3/00.Google Scholar
  92. 89.
    Badalova, E. I., Perepletchikov, S. V., Khostegyan, S. A. et al. (1973) Mandrel. Author’s Certificate of the USSR 363 764. ICI D 04H 3/00.Google Scholar
  93. 90.
    Kibardin, R. N. and Dobroskokin, N. V. (1980) Glass fibre paper, in Glass-Reinforced Plastics and Glass Fibres, NIITEKHIM, No. 2, Moscow, pp. 1–2.Google Scholar
  94. 91.
    Volskaya, S. Z., Gruzdeva, N. P., Zaitzeva, S. A. et al. (1980) Glass for glass fibres. Author’s Certificate of the USSR 787 382, ICI C03 C 13/00.Google Scholar
  95. 92.
    Kacharov, E. P. et al. (1977) Glass microbeads as fillers of composites. Plasticheskie Massy, (10), 9–10.Google Scholar
  96. 93.
    Bartenev, G. M (1974) Super-Strength and High-Strength Glasses, Stroyizdat, Moscow.Google Scholar
  97. 94.
    Pukh, V. A. (1973) Strength and Destruction of Glass, Nauka, Leningrad.Google Scholar
  98. 95.
    Aslanova, M. S. (1965) Modern Views on Strength of Glass Fibres, Khimiya, Moscow.Google Scholar
  99. 96.
    Pukh, V. P. (1986) Strength and structure of inorganic glasses, in Proceedings of the 8th All-Union Conference on the Glass-Like State, Nauka, Leningrad, p. 33.Google Scholar
  100. 97.
    Pukh, V. P., Novak, I.I., Baikova, L. G. et al. (1986) Strength of oxide glasses in connection with their structure, in Proceedings of the 8th All-Union Conference on the Glass-Like State, Nauka, Leningrad, p. 333.Google Scholar
  101. 98.
    Murgatroyd, J. B. (1944) Strength of glass fibres. Journal of the Society of Glass Technology, 28 (130), 368–87.Google Scholar
  102. 99.
    Bartenev, G. M. and Izmailova, L. K. (1962) Defect-free glass fibres. Doklady AN SSSR, 146, 1136–8.Google Scholar
  103. 100.
    Tarasov, V. V. (1979) Problems of Glass Physics, Moscow.Google Scholar
  104. 101.
    Aslanova, M. S. (1967) Strength and chemical content of glass. Steklo i Keramika, (4),1.Google Scholar
  105. 102.
    Aslanova, M. S. (1966) Les facteurs determinant les properietes mecanigues des fibres de verre et de guartx et des plastigues par ces fibres. Verre Textile Plastigues Renforces, (1), 14.Google Scholar
  106. 103.
    Aslanova, M. S. (1968) Resistance a la traction des fibres de verre at des fibres de silice vitreuse in fonction de l’etat de surface et de la microstructure. Verres et Refractaires, 22 (6), 585.Google Scholar
  107. 104.
    Khazanov, V. E., Dorzhiev, D. B. and Mishura, A. S. (1986) Thermophysical features of forming and physical and mechanical properties of continuous glass fibres. Steklyannoe Volokno i Stekloplastiki, NIITEKHIM, Moscow, p. 38.Google Scholar
  108. 105.
    Dorzhiev, D. B. and Gorbachev, V. V. (1983) Physical and mechanical properties and structures of alkaline and alkali-free aluminosilicate glasses, in Chemistry and Technology of Glass and Silicates, GIS, Moscow, pp. 34–42.Google Scholar
  109. 106.
    Zak, A. F. (1962) Physical and Chemical Properties of Glass Fibres, Moscow, Rostekhizdat.Google Scholar
  110. 107.
    Aslanova, M. S. (1960) Influence of different factors on mechanical properties of glass fibres, Steklo i Keramika, (11), 10.Google Scholar
  111. 108.
    Aslanova, M. S. and Volskaya, S. Z. (1965) Strength and structure of fibres of borate, cadmium and lead glass compositions, in Proceedings of the 4th All-Union Conference on the Glass-Like State, Leningrad, p. 428.Google Scholar
  112. 109.
    Ottow, P. F. (1950) Evidence against oriented structure in glass fibres. Journal of the Society of Glass Technology, 34 (157), 63.Google Scholar
  113. 110.
    Aslanova, M. S. and Chernov, V. A. (1975) Influence of heat treatment and water absorption on the state of the surface of quartz and silica fibres. Izvestiya AN SSSR: Neorganicheskie Materialy, 11 (5), 896.Google Scholar
  114. 111.
    Aslanova, M. S. (1961) Der einflass des umbehendes mediums anf die eigenschaften von glasfasern. Silikattechnik, 12 (12), 528.Google Scholar
  115. 112.
    Aslanova, M. S. (1975) New types of glass fibres. Zhurnal Vsesoyuznogo Khimicheskogo Obtschestva D. I. Mendeleev, 20 (12), 191–7.Google Scholar
  116. 113.
    Murgatroyd, J. (1944) Strength of glass fibres. Journal of the Society of Glass Technology, 28 (130), 368.Google Scholar
  117. 114.
    Aleksandrov, A. P. and Zhurkov, S. N. (1993) Effect of Brittle Breakage, GTTI, Leningrad.Google Scholar
  118. 115a.
    Reinkober, O. (1931/1932/1937) Tensile strength and elasticity of quartz fibres. Physikalische Zeitschrift, 32, 243;Google Scholar
  119. 115b.
    Reinkober, O. (1931/1932/1937) Tensile strength and elasticity of quartz fibres. Physikalische Zeitschrift, 33, 32;Google Scholar
  120. 115c.
    Reinkober, O. (1931/1932/1937) Tensile strength and elasticity of quartz fibres. Physikalische Zeitschrift, 38, 112.Google Scholar
  121. 116.
    Anderegg, F. O. (1939) Strength of glass fibre. Industrial Engineering Chemistry, 31 (3), 290.CrossRefGoogle Scholar
  122. 117.
    Bateson, S. (1958) Critical study of optical and mechanical properties of glass fibres. Journal of Applied Physics, 29 (1), 13–21.CrossRefGoogle Scholar
  123. 118.
    Otto, W. (1961) Compaction effects in glass fibres. Journal of the American Ceramics Society, 44 (2), 68–72.CrossRefGoogle Scholar
  124. 119.
    Norman, B. S. and Oakley, D. K. (1971) The diameter dependence of Young’s modulus of glass fibres. Glass Technology, 12 (2), 45.Google Scholar
  125. 120.
    Aslanova, M. S. et al. (1974) Influence of chemical composition of glass on the modulus of elasticity of glass fibres, in Proizvodstvo Steklyannogo Volokna, VNIISPV, Moscow, pp. 47–56.Google Scholar
  126. 121.
    Zak, A. F. and Manko, Yu. P. (1954) Influence of temperature on deformation and strength of glass fibres. Zhurnal Teoreticheskoi Fiziki, 24 (11), 1981–90.Google Scholar
  127. 122.
    Dorzhiev, D. B. and Khazanov, V. E. (1990) Physical properties and mechanism of destabilization of the strength of glass fibres on heat treatment, in Tugoplavkie Volokna i Melkodispersnye Napolniteli, Moscow, pp. 11–16.Google Scholar
  128. 123.
    Dorzhiev, D. B. (1982) Elasto-strength properties and structural features of glasses of alkali-free magnesium aluminosilicate, in Physical and Chemical Studies of the Structure and Properties of Glasses and Glass-Crystalline Materials, GIS, Moscow, pp. 32–8.Google Scholar
  129. 124.
    Maso, E. E., Kaminskaya, V. S. et al. (1970) Optical studying of destruction processes of glass fibres on alkali treatment. Doklady AN SSSR, 14 (3), 226–8.Google Scholar
  130. 125.
    Corkram, D. E. and Zitherland, K. L. (1983) Assessing the durability of glass compositions. Glastechnoligische Berichte, 56K (1), 644.Google Scholar
  131. 126.
    Brautman, L. and Koob, R. (eds) (1970) Modern Composite Materials, Mir, Moscow.Google Scholar
  132. 127.
    Wiedermann, G. and Frenzel, N. (1973) Untersuchungen zur dumischen bestandigfeit der glasseide. Faserforschung und Textiltechnik, 24 (9), 335.Google Scholar
  133. 128.
    Pavlushkin, N. M., Gorshkov, V. A. and Orlov, A. Yu. (1980) Influence of glass content in the Na2O-MgO-Al2O3-SiO2 system on chemical stability and microhardness, in Chemistry and Technology of Technical Silicates, MHTI D. I. Mendeleev, Moscow, No. 116, pp. 52–6.Google Scholar
  134. 129.
    Pashenko, A. A., Serbin, V. P., Paslavskaya, A. P. et al. (1988) in Reinforcement of Inorganic Binding Substances with Mineral Fibres (ed. A. A. Pashenko), Stroyizdat, Moscow, p. 64.Google Scholar
  135. 130.
    Bekishev, K. A., Shultz, M. M. and Parfenov, A. I. (1978) Alkali resistance of four-component sodium silicate glasses containing oxides of A12O3, SnO and ZrO2. Fizika i Khimiya Stekla, 4 (2), 225.Google Scholar
  136. 131.
    El-Shamy, T. M. and Ahmed, A. A. (1977) Corrosion of some common silicate glasses by aqueous solutions, in Proceedings of the 11th International Congress on Glasses, Prague, Vol. 3, pp. 181–95.Google Scholar
  137. 132.
    Zaitseva, S. A., Kolesov, Yu. I. and Volskaya, S. Z. (1982) Alkaline glass for production of fibres. Steklo i Keramika, (1), 12–13.Google Scholar
  138. 133.
    Zaitseva, S. A. and Kolesov, Yu. I. (1987) Influence of composition of initial glass on chemical stability of fibres, in Glass Fibres and Glass-Reinforced Plastics (ed. N. N. Trofimov), NPO Stekloplastic, pp. 7–9.Google Scholar
  139. 134.
    Skanavi, G. I. (1949) Physics of Dielectrics, Gostekhizdat, Moscow-Leningrad.Google Scholar
  140. 135.
    Mazurin, O. V. (1962) Electrical Properties of Glass in the Weak-Fields Range, Lengoskhimizdat, Leningrad.Google Scholar
  141. 136.
    Koretskii, Yu. V., Pasinkov, V. V. and Tareev, B. M. (eds) (1974) Reference Book on Electrical Engineering Materials, Vol. 2, Energiya, Moscow, pp. 269–98.Google Scholar
  142. 137.
    Aslanova, M. S. (1964) Properties des fibres inorganiques (fibres de verre de differents systemes vitreux), in Proceedings of the International Conference on Non-Crystalline Solids, p. 23.Google Scholar
  143. 138.
    Bystrov, V. P., Goncharov, Yu. G. et al. (1990) Dielectric properties of industrial inorganic glasses and glass-crystalline materials. Fizika i Khimiya Stekla, 16 (3), 397–401.Google Scholar
  144. 139.
    Stevels, I. M. (1961) Electrical Properties of Glass, Izdatinlit, Moscow.Google Scholar
  145. 140.
    Tareev, B. M. (1973) Physics of Dielectric Materials, Energiya, Moscow.Google Scholar
  146. 141.
    Andrianov, K. A. (1961) High-Molecular-Weight Compositions for Electrical Insulation, Gosenergoizdat, Moscow-Leningrad.Google Scholar
  147. 142.
    Baranovskii, V. V. and Dulitskaya, G. M. (1976) Laminated Plastics for Electrical Engineering Applications, Energiya, Moscow.Google Scholar
  148. 143.
    Berlin, A. A. and Basin, V. E. (1974) Principles of Polymer Adhesion, Khimiya, Moscow.Google Scholar
  149. 144.
    Gorbatkina, Yu. A. (1987) Adhesive Strength in Polymer-Fibre Systems, Khimiya, Moscow.Google Scholar
  150. 145.
    Andreevskaya, G. D. (1966) High-Strength Oriented Glass-Reinforced Plastics, Nauka, Moscow.Google Scholar
  151. 146.
    Trofimov, N. N. (1987) Thermostable oxide polycrystalline fibres. Plasticheskie Massy, (1), 53–4.Google Scholar
  152. 147.
    Shultz, M. M. (1983) Chemical structure of glass-forming melts and glasses, in The Glass-Like State, Nauka, Leningrad, pp. 10–18.Google Scholar
  153. 148.
    Pryanishnikov, V. P. (1971) The Silica System, Nauka, Moscow.Google Scholar
  154. 149.
    Leko, V. K. and Mazurin, O. V. (1985) Properties of Quartz Glass, Nauka, Leningrad.Google Scholar
  155. 150.
    Lazarev, A. N. (1975) Oscillating spectra of combined oxides, in Silicates and Analogues, Nauka, Leningrad.Google Scholar
  156. 151.
    Aslanova, M. S., Tikachinsky, N. D., Gorbachev, V. V. et al. (1983) Ultrasonic X-ray spectroscopy and its application to the examination of the structural-coordination condition of aluminium in three-component silicate glasses, in The Glass-Like State, Nauka, Leningrad, pp. 172–4.Google Scholar
  157. 152.
    Galakhov, F. Ya., Averiyanov, V. I., Vavilonova, V. T. and Areshev, M. P. (1976) The field of metastable liquation in the MgO-Al2O3-SiO2 system. Fizika i Khimiya Stekla, 2 (5), 412–16.Google Scholar
  158. 153.
    Kiselev, A. V. and Ligin V. I. (1972) Infrared Spectra of Surface Compositions and Absorbed Substances, Nauka, Moscow.Google Scholar
  159. 154.
    Zolotarev, V. M., Ligin, V. I. and Tarasevich, V.N. (1981) Internal reflection spectra of surface compositions and absorbed molecules. Uspekhi Khimii, 1 (1), 24–53.Google Scholar
  160. 155.
    Scholze, H. (1988) Chemistry of glass surfaces in Survey Papers of the 15th International Congress on Glass, Leningrad, Nauka, Leningrad, pp. 302–26.Google Scholar
  161. 156.
    Zakis, Yu. R. (1988) Defects in glass, in Survey Papers of the 15th International Congress on Glass, Leningrad, Nauka, Leningrad, pp. 234–79.Google Scholar
  162. 157.
    Aslanova, M. S., Bershtein, V. A., Emeliyanov, Yu. A. et al. (1977) Selective hydrolysis of the glass surface and the strength of glass fibres. Fizika i Khimiya Stekla, 3 (5), 506–11.Google Scholar
  163. 158.
    Kiselev, A. V., Ligin, V. I. and Shepalin, K. L. (1986) Chemical properties of dehydroxylated and rehydroxylated silica surfaces by infrared spectroscopy. Zhurnal Fizicheskoi Khimii, 60 (7), 1701–6.Google Scholar
  164. 159.
    Wong, R. (1972) Recent aspects of glass fibre-resin interfaces. Journal of Adhesion, 4(2), 171–9.CrossRefGoogle Scholar
  165. 160.
    Rynd, J. P. and Rastorgi, A. K. (1974) Auger electron spectrocopy is a new tool in the characterization of glass fibre surfaces. Journal of the American Ceramics Society, 53 (9), 631–7.Google Scholar
  166. 161.
    Rynd, J. P. and Rastorgi, A. K. (1975) Characterization of glass surfaces by electron spectroscopy. Surface Science, 48 (1), 22–43.CrossRefGoogle Scholar
  167. 162.
    Escard, J. and Brion, D. (1978) Study of composition of leached glass surfaces by photoelectron spectroscopy. Journal of the American Ceramics Society, 48 (1), 445.Google Scholar
  168. 163.
    Roginskii, S. L., Kanovich, M. Z. and Koltunov, N. A. (1979) High-Strength Glass-Reinforced Plastics, Khimiya, Moscow.Google Scholar
  169. 164.
    Lee, H. and Nevill, K. (1973) Reference Guide on Epoxy Resins, Energiya, Moscow.Google Scholar
  170. 165.
    Pludeman, E. (1978) Interfaces in Polymer Composites, Mir, Moscow.Google Scholar
  171. 166.
    Tager, A. A. (1968) Physics and Chemistry of Polymers, Khimiya, Moscow.Google Scholar
  172. 167.
    Shukin, E. D., Pertzov, A. V. and Amelina, E. A. (1982) Colloidal Chemistry, Moscow University Press, Moscow.Google Scholar
  173. 168.
    Trofimov, N. N. and Kanovich, M. Z. (1989) New developments in polymer materials reinforced with glass fibres and oxide fibres. Zhurnal Vsesouznogo Obtschestva D. I. Mendeleev, 34 (5), 447–53.Google Scholar
  174. 169.
    Dzyaloshinskii, I. E., Lifshitz, E. M. and Pitaevskii, L. P. (1961) General theory of van der Waals forces. Uspekhi Fizicheskikh Nauk, 73 (3), 381–97.Google Scholar
  175. 170.
    Belyi, V. I., Smurulov, V. A., Sviridenok, A. I. and Savkin, V. G. (1978) Molecular interaction of polymers in the zone of frictional contact. Doklady AN SSSR, 24 (3), 573–5.Google Scholar
  176. 171.
    Kharrik, N. (1970) Internal Reflection Spectroscopy, Mir, Moscow.Google Scholar
  177. 172.
    Trofimov, N. N., Kalenchuk, A. N. and Kanovich, M. Z. (1990) Application of methods of quantum chemistry in the production of new composite materials, in Proceedings of the Moscow International Conference on Composites, Part 1, Nauka, Moscow, pp. 128–9.Google Scholar
  178. 173.
    Trofimov, N. N., Kanovich, M. Z. and Nikiforov, A. T. (1990) Prediction of long-term strength of composite materials. Doklady AN SSSR, 311 (6), 1325–8.Google Scholar
  179. 174.
    Trofimov, N. N., Kalenchuk, A. N. and Kanovich, M. Z. (1990) Requirements on components of glass-reinforced plastic composites for optimal adhesive bonding. Information Bulletin on Chemical Industry of CMEA, 3 (130), 27–31.Google Scholar
  180. 175.
    Dunken, H. and Ligin, V. I. (1980) Quantum Chemistry of Absorption on the Solid Surfaces, Mir, Moscow.Google Scholar
  181. 176.
    Fliger, U. (1982) Structure and Dynamics of Molecules, Vol. 2, Mir, Moscow, pp. 411–872.Google Scholar
  182. 177.
    Binkley, J. S. (1981) GAUSSIAN-81. QCPE Program, No. 406.Google Scholar
  183. 178.
    Hoffman, R. (1963) An extended Hückel theory. I. Hydrocarbons. Journal of Chemical Physics, 39 (5), 1397–422.CrossRefGoogle Scholar
  184. 179.
    Hoffman, R. (1964) Extended Hückel theory. III. Compounds of boron and nitrogen. Journal of Chemical Physics, 40 (8), 2474–91.CrossRefGoogle Scholar
  185. 180.
    Kalenchuk, A. N., Kanovich, M. Z. and Trofimov, N. N. (1990) Quantum-chemical study of hydrogen interactions in glass-reinforced plastic composites. Doklady AN SSSR, 312 (6), 1395–8.Google Scholar
  186. 181.
    Trofimov, N. N., Kalenchuk, A. N. and Kanovich, M. Z. (1989) Aspects of the determination of hydrogen interaction in glass-reinforced plastic composites. Information Bulletin on Chemical Industry of CMEA, 6 (127), 42–5.Google Scholar
  187. 182.
    Zhidomirov, G. M. (1977) Some approaches in the quantum-chemical theory of heterogeneous catalysis. Kinetika i Kataliz, 18 (5), 1192–201.Google Scholar
  188. 183.
    Mikheikin, I. D., Abronin, I. A., Zhidomirov, G. M. and Kazansky, V. B. (1977) Calculations of chemisorption and elementary stages of catalytic reactions in the cluster model. Kinetika i Kataliz, 18 (6), 1580–3.Google Scholar
  189. 184.
    Mozzi, R. L. and Warren, B. E. (1969) The structure of vitreous silica. Journal of Applied Crystallography, 2 (4), 169–72.CrossRefGoogle Scholar
  190. 185.
    Gallener, F. L. (1982) Planar rings in vitreous silica. Journal of Non-Crystalline Solids, 49 (1), 53–62.CrossRefGoogle Scholar
  191. 186.
    Soules, T. F. (1988) Computer simulation of glass structures, in Survey Papers of the 15th International Congress on Glass, Leningrad, Nauka, Leningrad, pp. 84–102.Google Scholar
  192. 187.
    Gidds, G. V. (1982) Molecules as a model for bonding in silicates. American Minerals, 67 (5/6), 421–51.Google Scholar
  193. 188.
    Mitra, S. K., Amini, M., Fincham, D. and Hockney, P. W. (1981) Molecular dynamics simulation of silica glass. Philosophical Magazine B, 43 (5), 365–73.CrossRefGoogle Scholar
  194. 189.
    Tossell, J. A. (1973) Interpretation of X-ray emission spectra and chemical bonding in oxides of Mg, Al and Si using quantitative molecular orbital theory. Geochimica et Cosmochimica Acta, 37 (3), 583–94.CrossRefGoogle Scholar
  195. 190.
    Tossell, J. A. (1975) The electron structures of silicon, aluminium and magnesium in tetrahedral coordination with oxygen from SCF-X MO calculations. Journal of the American Chemical Society, 97 (17), 4840–4.CrossRefGoogle Scholar
  196. 191.
    Dicov, Y. P., Debolsky, E. I., Romashenko, Yu. N. et al. (1977) Molecular orbitals of SiO, SiO etc. and mixed (B, Al, P, Si) applied to clusters and X-ray spectroscopy of silicates. Physics and Chemistry of Minerals, 1 (1), 27–41.CrossRefGoogle Scholar
  197. 192.
    Skrishevsky, A. F. (1980) Structural Analysis of Fluids and Amorphous Bodies, Vysshaya shkola, Moscow.Google Scholar
  198. 193.
    Umansky, Ya. S., Skakov, Yu. A., Ivanov, A. N. and Rastorguev, L. N. (1982) Crystallography, Radiography and Electron Microscopy, Metallurgiya, Moscow.Google Scholar
  199. 194.
    Rikhter, K. G. (1977) Radiographic examination of amorphous and fine-crystalline catalysts by radial distribution of atoms, in Radiography of Catalysts, Novosibirsk, pp. 5–40.Google Scholar
  200. 195.
    Libau, F. (1988) Structural Chemistry of Silicates, Mir, Moscow.Google Scholar
  201. 196.
    Production and Application of Sizing for Glass Fibres (1987) NPO Stekloplastic, Moscow.Google Scholar
  202. 197.
    Ekstein, I. and Berger, E. (1988) Influence of silanes on the strength of adhesive compositions of glass fibres, in Adhesives and Adhesive Compositions, Mir, Moscow, pp. 184–202.Google Scholar
  203. 198.
    Lerner, J. and Snry, J. (1975) Silikatova Vlakna, Prague, p. 25.Google Scholar
  204. 199.
    Glass fibre compositions. UK Patent 1243 973.Google Scholar
  205. 200.
    Pashenko, A. A., Serbin, V. P., Paslavskaya, A. P. et al. (1988) in Reinforcment of Inorganic Binders with Mineral Fibres (ed. A. A. Pashenko), Stroyizdat, Moscow, p. 51.Google Scholar
  206. 201.
    Mazurin, O. V. et al. (1973) Properties of Glasses and Glass-Forming Melts, Vol. 1, Nauka, Leningrad, pp. 16–156.Google Scholar
  207. 202.
    Botvinkin, O. K. and Zaporozhny, A. I. (1965) Quartz Glass, Stroyizdat, Moscow.Google Scholar
  208. 203.
    Khodkevich, L. P. and Leko, V. K. (1981) Quartz Glass in the Production of Electrical Vacuum Articles, Energoizdat, Leningrad, p. 88.Google Scholar
  209. 204.
    Shutilov, V. A. and Abesgauz, B. S. (1985) Structural features and models of the structure of quartz glass. Fizika i Khimiya Stekla, 11 (3), 257–71.Google Scholar
  210. 205.
    Shutilov, V. A. and Abergauz, B. S. (1985) Electronic structure of silicon dioxide in the cluster approximation. Fizika i Khimiya Stekla, 11 (2), 129–45.Google Scholar
  211. 206.
    Chernov, G. V. and Freidman, S. P. (1985) Physical properties of quartz glass. Fizika i Khimiya Stekla, 11 (5), 513–15.Google Scholar
  212. 207.
    Zasolotzkaya, M. V., Bukin, L. A. and Kornev, V. V. (1988) Diagram of Transformation in the Silica System, VNIICHM, Moscow, 1988.Google Scholar
  213. 208.
    Zasolotzkaya, M. V., Dobrovolsky, V. A., Khazanov, V. E. and Zueva, V. N. (1988) Influence of impurity content on crystallization stability and shrinkage of quartz fibres. Steklo i Keramika, (1), 7–12.Google Scholar
  214. 209.
    Vasilevskaya, T. N., Golubkov, V. V., Titov, A. P. and Porai-Koshitz, E. A. (1981) Structural study of single-phase glasses by X-ray scattering at small angles (SLA), in Proceedings of the 7th All-Union Conference on the Glass-Like State, Nauka, Leningrad, p. 80.Google Scholar
  215. 210.
    Khazanov, V. E., Zueva, V. N. and Tzirin, V. M. (1990) Stability to crystallization of superfine quartz fibres, in Refractory Fibres and Finely Dispersed Fillers, NPO Stekloplastic, Vneshtorgizdat, Moscow, pp. 3–7.Google Scholar
  216. 211.
    Shadiro, L. L., Tzirin V. I. and Khazanov V. E. (1990) Influence of joint content of Al and Ca oxides in quartz rods on crystallization stability of superfine quartz fibres, in Refractory Fibres and Finely Dispersed Fillers, NPO Stekloplastic, Vneshtorgizdat, Moscow, pp. 8–10.Google Scholar
  217. 212.
    Pryanishnikov, V. P. (1973) in Glass (ed. N. M. Pavlushkin), Stroyizdat, Moscow, p. 207.Google Scholar
  218. 213.
    Mitzue, K. (1983) Materials for space developments ‘Karaky kore’. Chemistry and Industry, 34 (12), 1057–61.Google Scholar
  219. 214.
    Khazanov, V. E. (1968) Conditions of quartz fibre formation using ESM, and factors influencing its strength. Candidate Thesis, MKHTI, Moscow.Google Scholar
  220. 215.
    Saveliev, V. N. and Finkelshtein, L.V. (1974) Strength of quartz glass, in Collection of Works of Nil Steklo, No. 1, pp. 125–30.Google Scholar
  221. 216.
    Mallinder, F. P. and Proctor, B. A. (1981) Elastic constants of fused silica as a function of large tensile strain. Physics and Chemistry of Glass, 5 (1), 42–6.Google Scholar
  222. 217.
    Klimanov, S. G. and Rudakova, S. E. (1981) Study of glass fibres with decreased strength after heat treatment. Fizika i Khimiya Stekla, 7 (1), 42–6.Google Scholar
  223. 218.
    Aslanova, M. S., Shelubsky, V. I., Khazanov, V. E. and Gerasimova L. G. (1972) Influence of heat treatment on the strength of quartz fibres, in Mechanical and Thermal Properties and Structures of Inorganic Glasses, VNIIESM, Moscow, p. 31.Google Scholar
  224. 219.
    Aslanova, M. S., Rudnev, V. S. and Filonenko, S. E. (1969) Influence of heat treatment on the state of the surfaces of quartz fibres. Steklo i Keramika, (7), 18–20.Google Scholar
  225. 220.
    Aslanova, M. S., Klimanov, S. G., Rudakova, S. E. and Khazanov, V. E. (1975) Study of quartz fibres by EPR and IR spectroscopy. Izvestiya AN SSSR: Neorganicheskie Materialy, 11 (5), 890.Google Scholar
  226. 221.
    Phillips, W. A. (1981) OH in vitreous silica. Philosophical Magazine B, 43 (5), 747–64.CrossRefGoogle Scholar
  227. 222.
    Bihiniak, P. P., Calabrese, A. and Erwin, E. M. (1983) Effect of trace impurity levels on the viscosity of vitreous silica. Journal of the American Ceramics Society, 66 (1), 352–4.Google Scholar
  228. 223.
    Aslanova, M. S. and Rebinder, P. A. (1954) Absorption effects of elastic after-action and creepage in glass fibres. Doklady AN SSSR, 95 (6), 299–302.Google Scholar
  229. 224.
    Aslanova, M. S. and Chernov, V. A. (1975) Influence of heat treatment and water absorption on the surface state of quartz and silica fibres. Izvestiya AN SSSR: Neorganicheskie Materialy, 11 (5), 896.Google Scholar
  230. 225.
    Aslanova, M. S. (1974) Influence of quartz glass defects on glass fibre production, in Proceedings of the Annual Symposium on Defects in Glass, Tokyo-Kyoto, p. 9.Google Scholar
  231. 226.
    Dran, J. C. (1974) Survey: use of fibres. Industrial Minerals, (5).Google Scholar
  232. 227.
    Lozino-Lozinsky, G. E. (1990) ‘Buran’ flight, in Gagarin Lectures on Space Flights and Aviation, Nauka, Moscow, pp. 6–21.Google Scholar
  233. 228.
    Zak, A. P. and Manko, Yu. P. (1962) Chemical stability and strength of glass fibres on exposure to corrosive media, in Collected Scientific Works, VNIISPV, No. 2, pp. 3–36.Google Scholar
  234. 229.
    Zak, A. P. (1962) Physical and Chemical Properties of Glass Fibres, Rostekhizdat, Moscow, pp. 131, 138–60.Google Scholar
  235. 230.
    Lavrinovich, I. A., Volkov, V. I. and Aslanova, M. S. (1981) Influence of parameters of acid treatment on the degree of leaching of glass fibre materials produced from glasses of various chemical compositions, in Studies on the Produc- tion of Glass Fibres and Glass-Reinforced Plastics, NIITEKHIM, Moscow, pp. 70–9.Google Scholar
  236. 231.
    Aslanova, M. S., Lavrinovich, I. A., Afonsky, A. A. et al (1978) Method of production of glass fibre materials. Author’s Certificate of the USSR 804 587, ICI CO3 25/06.Google Scholar
  237. 232.
    Norberg, M. E. (1949) Method of production of fibrous glass articles. US Patent 2 461 841, ICI 49–79.Google Scholar
  238. 233.
    Byron, M. W. and Westfield, N. J. (1966) Polymeric sizes for siliceous fibrous materials and reinforced plastic compositions produced therefrom, US Patent 3 231 540, ICI 260–41.5.Google Scholar
  239. 234.
    Stevens, J. P. (1968) Silica fabrics and method for their production, French Patent 1 540 434, ICI CO3 C 25/00.Google Scholar
  240. 235.
    Method of production of glass fibres and refractory fibres, French Patent 2 209 730, ICI CO3 13/00.Google Scholar
  241. 236.
    Production of silica fibres by leaching methods, French Patent 1 134 515, ICI CO3 B.Google Scholar
  242. 237.
    Eguchi, K., Kurita, H. and Kato, T. (1980) Influence of conditions of production on the content of SiO2 in high-silica glasses. Studies of Conditions of Production and Applications of High-Silica Glasses, 88 (1013), 21–7.Google Scholar
  243. 238.
    Aslanova, M. S. and Kostareva, S. I. (1971) Kinetics of leaching of sodium silicate fibres and structural features of silica fibres based on them. Zhurnal Prikladnoi Khimii, 44 (10), 2174–6.Google Scholar
  244. 239.
    Aslanova, M. S. and Kostareva, S. I. (1972) Production of new types of temperature-resistant leached fibres based on SiO2−Al2O3−B2O3−Na2O glasses, and studies of their structure, in Mechanical and Thermal Properties and Structures of Inorganic Glasses, VNIIESM, Moscow, pp. 291–4.Google Scholar
  245. 240.
    Aslanova, M. S. (1971) Microstructures of the glass fibres of various chemical compositions, in The Glass-Like State, Nauka, Leningrad, pp. 320–3.Google Scholar
  246. 241.
    Oka, Y., Waha, J. M. and Tomazawa, M. (1981) Influence of surface energy on mechanical strength of high-silica glasses. Journal of the American Ceramics Society, 64 (8), 456–60.CrossRefGoogle Scholar
  247. 242.
    Lavrinovich, I. A., Volkov, V. I. and Gurba, E. N. (1990) Reasons for the instability of the strength of silica materials and ways to remove them, in Refractory Fibres and Finely Dispersed Fillers, NPO Stekloplastic, Vneshtorgizdat, Moscow, pp. 31–4.Google Scholar
  248. 243.
    Aslanova, M. S. and Yakovlevich, V. Ya. (1976) Processes involved in the heating and finishing of silica threads, in Technology, Physical and Chemical Properties, and Applications of Glass Fibre Materials, VNIISPV, Moscow, p. 24.Google Scholar
  249. 244.
    Gurba, E. N., Volkov, V. I. and Lavrinovich, I. A. (1990) Factors influencing properties of silica shrinkage-free finished threads, in Refractory Fibres and Finely Dispersed Fillers, NPO Stekloplastic, Vneshtorgizdat, Moscow, pp. 20–3.Google Scholar
  250. 245.
    Rodicheva, V. N., Koryavin, A. A. and Shashkin, V. S. (1981) Gas emission from silica over a wide temperature range, in Studies in Physical and Chemical Technology of Glass, Moscow, pp. 13–19.Google Scholar
  251. 246.
    Susatronic Engineering AG. Booklet. Switzerland (1971).Google Scholar
  252. 247.
    Musiyachenko, V. D., Gurba, E. N. and Kalenchuk, A. N. (1990) Crystallization stability of superthin silica fibre, in Refractory Fibres and Finely Dispersed Fillers, NPO Stekloplastic, Vneshtorgizdat, Moscow, pp. 23–6.Google Scholar
  253. 248.
    Karoll-Porchinsky, U. (1966) Future Materials, Khimiya, Moscow, pp. 44–6.Google Scholar
  254. 249.
    New insulating material for BKS Space Shuttle (1982). Refractories Journal, (1), 18.Google Scholar
  255. 250.
    Aslanova, M. S. (1966) Influence of water-repellency treatment of the surface of glass fibres on their properties. Chemical Treatment of Glass Fibre Surfaces, Khimiya, Moscow, pp. 10–15.Google Scholar
  256. 251.
    Lapin, E. A. and Efimova, G. I. (1988) Heat-insulating plates based on superfine silica fibres of CSSB-11-190, CSSB-11-215 and CSSB-11-245 types. Information Sheet on Scientific Developments, Moscow, No. 88-1418.Google Scholar
  257. 252.
    Volkov, V. I., Tarasov, A. F. et al. Heat-insulating material based on superfine silica fibres. Author’s Certificate of the USSR 956 686.Google Scholar
  258. 253.
    Salnikov, K. Ya., Palushkin, A. P. and Aslanova, M. S. (1969) Influence of basic technological parameters on the formation of a jet of aluminium melt, in Structure, Properties and Formation of Glass Fibres, Part II, VNIISPV, Moscow, p. 128.Google Scholar
  259. 254.
    Galushkin, A. P. and Kriskov, V. I. (1969) Formation of staple fibres from refractory aluminosilicate melts, in Structure, Properties and Formation of Glass Fibres, Part II, VNIISPV, Moscow, p. 128.Google Scholar
  260. 255.
    Chrzesczyk, M., Lakrewska, K. and Piotrowska, N. (1987) Moderne isolation serzeugnisse fur einsatz-temperaturen bis 1800 K, in 5 Symposium Fenerbeton, Dresden.Google Scholar
  261. 256.
    Loehman, R. E. (1983) Preparation and properties of oxynitride glasses. Journal of Non-Crystalline Solids, 56 (1–3), 123–34.CrossRefGoogle Scholar
  262. 257.
    Loehman, R. E. (1985) Oxynitride glasses. Treatise on Materials Science and Technology, 26, 119–48.Google Scholar
  263. 258.
    Messier, D. R. (1985) Review of oxynitride glasses. Revue de Chimie et Minerologie, 22, 518–32.Google Scholar
  264. 259.
    Messier, D. R. (1987) Preparation and properties of Y−Si−Al−O−N glasses. Journal of High Technology Ceramics, 3, 31–41.Google Scholar
  265. 260.
    Andrien, A. (1987/1988) Quelques verres pour demain. Rev. Jnt. Hautes Temper. Refract. Fr., 24 (2), 129–38.Google Scholar
  266. 261.
    Suekhiro, M., Takao, S. and Niside, K. Production of oxynitride glass. Japan Application 1 167 255, ICI4 CO3 C 3/06, C 03 B 8/00.Google Scholar
  267. 262.
    Kada, K., Minaguti, K., Kobayasi, D. and Ota, M. Oxynitride glass fibre. Japan Application 1157434, ICI4 CO 3 C 13/00, CO 3 B 37/022.Google Scholar
  268. 263.
    Lubin, G. (ed.) (1970) Handbook Of Fibreglass and Advanced Plastics Composites, New York.Google Scholar
  269. 264.
    Pavlushkin, N. M. (1983) Chemical Technology of Glass and Sithalles, Stroyizdat, Moscow.Google Scholar
  270. 265.
    Aslanova, M. S. and Khazanov, V. E. (1978) Influence of conditions of forming on the strength of continuous glass fibres. Fizika i Khimia Stekla, 4 (4), 422.Google Scholar
  271. 266.
    Bartenev, G. M. and Sandatov, D. S. (1973) The plasticity and strength of glass. Doklady AN SSSR, 209,1322–5.Google Scholar
  272. 267.
    Norman, V. (1975) The strength of glass fibres. Zhurnal Khimii, 4M173.Google Scholar
  273. 268.
    Kozlovskaya, E. I. (1960) Dependence of elastic properties of glass on composition, in Proceedings of the 3rd All-Union Conference on the Glassy State, AN SSSR, Moscow-Leningrad, pp. 340–3.Google Scholar
  274. 269.
    Appen, A. L., Kozlovskaya, E. I. and Gan-Fu-Si (1961) Elastic and acoustic properties of silicate glasses. Zhurnal Prikladnoi Khimii, 34 (5), 975–82.Google Scholar
  275. 270.
    Dorzhiev, D. B., Sapozhkova, L. A. and Aslanova, M. S. (1981) Physical, mechanical and structural features of magnesium aluminosilicate glasses, in Production of Glass Fibres and Glass-Reinforced Plastics, VNIISPV, Moscow, pp. 83–90.Google Scholar
  276. 271.
    Sapozhkova, L. A., Dorzhiev, D. B. and Aslanova, M. S. (1984) Physical properties and X-ray emission spectra of MgO−Al2O3−SiO2 and Na2O−Al2O3−SiO2 glasses, in Physical and Mechanical Studies of Glass Fibre Materials and Glass-Reinforced Plastics, VNIISPV, Moscow, pp. 64–78.Google Scholar
  277. 272.
    Turchinovich, L. M. et al. (1974) New Tests of Microhardness, Nauka, Moscow.Google Scholar
  278. 273.
    Aslanova, M. S., Razumovskaya, I. V., Dorzhiev, D. B. and Sapozhkova L. A. (1976) Mechanical properties of glasses in microvolume and strength of glass fibres. Fizika i Khimiya Stekla, 2 (1), 51–4.Google Scholar
  279. 274.
    Aslanova, M. S., Sapozhkova, L. A. and Khodakovskaya, R. Ya. (1977) Micro-brittleness of glasses and strength of glass fibres of various chemical compositions. Steklo i Keramika, (11), 26–8.Google Scholar
  280. 275.
    Berstein, V. A. and Nikitin, V. V. (1974) Interaction of moisture with the surface of melted quartz studied by multiple disturbed complete internal reflection IR spectroscopy. Izvestiya AN SSSR: Neorganicheskie Materialy, 10 (2), 316.Google Scholar
  281. 276.
    Aslanova, M. S., Sapozhkova, L. A. and Gordon, S. S. (1980) Density and temperature of the upper limit of crystallization of MgO−Al2O3−SiO2 glasses. Fizika i Khimiya Stekla, 6 (6), 669–73.Google Scholar
  282. 277.
    Aslanova, M. S. (1978) Reinforcement of composite materials with glass fibres. Zhurnal Vsesouznogo Obtschestva D. I. Mendeleev, 23 (3), 249–52.Google Scholar
  283. 278.
    Aslanova, M. S., Zueva, V. N. and Shaina, Z. I. (1982) Influence of chemical composition of glass on density and modulus of elasticity of some types of high-modulus glasses used for production of glass fibres. Glass-Reinforced Plastics and Glass Fibres, (5), 1–3.Google Scholar
  284. 279.
    Aslanova, M. S. and Shaina, Z. I. (1968) Physical properties of fibres of microcrystalline structure, in Structure, Composition, Properties and Formation of Glass Fibres (ed. M. S. Aslanova), Vol. I, VNIISPV, Moscow, p. 93.Google Scholar
  285. 280.
    Aslanova, M. S. and Shaina, Z. I. (1969) Influence of liquation on the physical and chemical properties of heat-treated fibres, in Liquation Effects in Glasses, Nauka, Leningrad, pp. 128–32.Google Scholar
  286. 281.
    Redrawn inviscid melt spinning doubles glass fibre strength (1989) Future-technology, (92), 1–18.Google Scholar
  287. 282.
    Aslamova, M. S., Roginsky, S. L. et al. (1972) Influence of diameter of glass fibres on the strength of glass-reinforced plastics under compression. Mek-hanika Polimerov, (4), 626–30.Google Scholar
  288. 283.
    Aslanova, M. S. et al. (1974) Influence of chemical composition of glass on the modulus of elasticity of glass fibres, in Production of Glass Fibres, VNIISPV, Moscow, pp. 47–56.Google Scholar
  289. 284.
    Aslanova, M. S. and Khazanov, V. E. (1978) Influence of formation conditions on the strength of continuous glass fibres. Fizika i Khimiya Stekla, 4 (4).Google Scholar
  290. 285.
    Uedo, I. (1986) High-strength high-elastic modulus glass fibres. Reinforced Plastics, 32 (6), 28–282.Google Scholar
  291. 286.
    Steward, N. (1979) S-glass. Plastics World, 37 (3), 47–9.Google Scholar
  292. 287.
    High strength glass fibre (1987) in New Materials Developments, Tokyo, pp. 323–5.Google Scholar
  293. 288.
    Aslanova, M. S., Baikova, L. G., Pukh, V. P. and Sapozhkova, L. A. (1981) Mechanical damageability of glasses and strength of fibres based on them, in Proceedings of the 7th All-Union Conference on the Glassy State, Leningrad, p. 28.Google Scholar
  294. 289.
    Aslanova, M. S., Tikachinsky, I. D., Gorbachev, V. V. et al. (1981) Ultralongwave X-ray spectroscopy and its application to the examination of the structural-coordination condition of aluminium in three-component glasses, in Proceedings of the 7th All-Union Conference on the Glassy State, Leningrad, p. 30.Google Scholar
  295. 290.
    Aslanova, M. S., Roginsky, S. L., Natrusov, V. I. and Khazanov, V. E. (1973) Investigation of the influence of a number of factors on the compressive strength of glass-reinforced plastics using a mathematical model. Plasticheskie Massy, (2), 60–3.Google Scholar
  296. 291.
    Gordon, S. S. and Aslanova, M. S. (1969) Optimization of the formation of hollow fibres by experimental and statistical methods, in Structure, Composition, Properties and Formation of Glass Fibres (ed. M. S. Aslanova), Part II, VNIISPV, Moscow, p. 29.Google Scholar
  297. 292.
    Aslanova, M. S. and Gordon, S. S. (1973) Deformation of the glass melt in the forming zone of hollow glass fibres. Mekhanika Polimerov, (4), 599.Google Scholar
  298. 293.
    Aslanova, M. S. et al. (1967) Reinforcement of plastic material on the basis of hollow glass fibres. Plasticheskie Massy, (7), 61.Google Scholar
  299. 294.
    Aslanova, M. S. et al. (1966) Increasing the specific bending rigidity of glass-reinforced plastics. Mekhanika Polimerov, (3), 380.Google Scholar
  300. 295.
    Aslanova, M. S. et al. (1968) Efficiency of using hollow fibres for increasing the rigidity of glass-reinforced plastics. Mekhanika Polimerov, (4), 672.Google Scholar
  301. 296.
    Ryan, B. and Tardy, B. (1978) Handbook of Fillers and Reinforcements for Plastics, New York, p. 317.Google Scholar
  302. 297.
    Lewis, A. (1967) High strength, high-modulus glass fibres. Journal of Polymer Science, 19,117–50.Google Scholar
  303. 298.
    Composition of glasses with high modulus of elasticity in the system SiO2−Al2O3−MgO−(CeO2, La2O3, Y2O3). US Patent 3 573 078, Class 106–52.Google Scholar
  304. 299.
    Litvinov, P. I. and Zhuravleva, R. A. (1965) Glass formation in the SiO2−Al2O3−CeO2 system. Glass (GIS), (2), 38–40.Google Scholar
  305. 300.
    Nemkovich, I. K., Yasinsky, L. G. and Levchenya, A. (1974) Glass formation and some properties of SiO2−CeO2−A12O3 glasses, in Glass, Sithalles and Silicate Materials, No. 3, Vysshaya shkola, Minsk, pp. 60–3.Google Scholar
  306. 301.
    Aslanova, M. S. and Popova, G. S. (1980) Glass fibres with protective and other properties, in Glass Fibres and Glass-Reinforced Plastics, NIITECHIM, Moscow, pp. 15–24.Google Scholar
  307. 302.
    Aslanova, M. S., Ivanov, N. V., Popova, G. S. and Lukavova, R. V. (1981) Internal friction of cerium aluminosilicate glass fibres, in Production of Glass Fibres and Fibre-Reinforced Plastics, VNIISPV, Moscow, pp. 79–83.Google Scholar
  308. 303.
    Aslanova, M. S. and Yakovleva, M. A. (1964) Influence of the surface layer of copper-containing glass fibres on their mechanical and electrical properties. Doklady AN SSSR, 159 (1), 186.Google Scholar
  309. 304.
    Device for manufacturing glass fibres with aluminium coatings. Japan Application 59–3417, ICI C03 C 25/04 (1984).Google Scholar
  310. 305.
    Method of manufacture of optical fibres with metal coatings. Japan Application 61–122138, ICI CO3 C 25/04 (1984).Google Scholar
  311. 306.
    Method of manufacture of optical fibres with coatings. US Patent 4 600 422, ICI CO3 C 25/02 (1986).Google Scholar
  312. 307.
    Method of applying metal coatings to dielectric fibres. Author’s Certificate of the USSR 903327, ICI CO3 C 25/02 (1988).Google Scholar
  313. 308.
    Method of treatment of bundles of inorganic fibres. Author’s Certificate of the USSR 961 265, ICI CO3 C 25/02 (1982).Google Scholar
  314. 309.
    Plant for metallization of dielectric fibres. Author’s Certificate of the USSR 981 265, ICI CO3 B 37/12 (1982).Google Scholar
  315. 310.
    Method of manufacture of optical fibres with metal coatings. Japan Application 59–3414, ICI CO3 B 37/12 (1984).Google Scholar
  316. 311.
    Method of manufacture of optical fibres with metal coatings. Japan Application 59–3415 (1984).Google Scholar
  317. 312.
    Method of manufacture of optical fibres with metal coatings. Japan Application 59–3416, ICI CO3 B 37/12 (1984).Google Scholar
  318. 313.
    Vishenkov, A. S. (1975) Chemical Nickel Plating, Khimiya, Moscow.Google Scholar
  319. 314.
    Thermoplastics with effective protection against electromagnetic radiation. US Patent 4 596 670 (1986).Google Scholar
  320. 315.
    Glass-reinforced plastic. Japan Application 61–157537 (1986).Google Scholar
  321. 316.
    Aslanova, M.S. and Shkolnikova, A. Ya. (1970) Study and development of SiO2-B2O3-A12O3 glasses for the production of fibres with low dielectric constant, in Glass Fibres and Glass-Reinforced Plastics, VNIISPV, Moscow, pp. 12–19.Google Scholar
  322. 317.
    Aslanova, M. S, Stetzenko, V. Ya. and Shustrov, A. F. (1981) Hollow inorganic microspheres, in Chemical Industry Abroad, NIITECHIM, Moscow, No. 9, pp. 33–50.Google Scholar
  323. 318.
    McMurrer, M. (1985) Update on microspheres. Plastics and Composites, (3), 16–31.Google Scholar
  324. 319.
    Avanesov, A. M. and Avetisyan, I. A. (1975) Natural frequency and fluctuations of a bubble with a viscous or viscoelastic surface layer of liquid, in Proceedings of the Symposium on the Physics of Acoustic and Hydrodynamical Effects, Moscow, pp. 113–17.Google Scholar
  325. 320.
    Dorogotovtzev, V. M., Isakov, A. I., Merkuriev, Yu. A. et al. (1982) Dynamics of a spherically symmetrical layer of viscous liquid. Lebedev Institute Preprint FIAN 106, Moscow.Google Scholar
  326. 321.
    Budov, V. V. and Stetzenko, V. Ya. (1988) Selection of glass composition for the production of hollow microspheres. Steklo i Keramika, (8), 15–17.Google Scholar
  327. 322.
    Gamier, P. R. (1989) Redox aspects of hollow glass microsphere production, in Proceedings of the 15th International Congress on Glass, Leningrad, pp. 266–9.Google Scholar
  328. 323.
    Trofimov, N. N., Chernov, V. A., Stetzenko, V. Ya. and Khazanov, V. E. (1989) Synthesis of new types of multifunctional inorganic fibres and hollow microspheres from solution, in Proceedings of the 15th International Congress on Glass, Leningrad, pp. 262–5.Google Scholar
  329. 324.
    Appen, A. A. (1970) Chemistry of Glass, Leningrad, p. 8.Google Scholar
  330. 325.
    Dobroskokin, N. N. and Kolesov, Yu. I. (1977) Use of glass fibre production waste in glass making. Steklo i Keramika, (7), 13–14.Google Scholar
  331. 326.
    Moser, H. (1936) Recycling and processing of glassfibre waste. Glass, 63 (2), 61.Google Scholar
  332. 327.
    Nores, H. (1986) Recycling und Aufbereitung von Glasfaser abfallen. Sprechsaal, 119 (5), 361.Google Scholar
  333. 328.
    Method of production of glass powder. Author’ s Certificate of the USSR 156 049, ICI C03 B 1/00, CO3 C 12/00 (1990).Google Scholar
  334. 329.
    Gusev, V. E. and Ozerov B. V. (1978) Equipment and Production Technology for Non-Woven Materials, Lyogkaya Industriya, Moscow, 1978.Google Scholar
  335. 330.
    Dobroskokin, N. N., Vakulenko, E. G., Vedernikov, V. V. et al (1983) Non-woven reinforcing materials (technology and production), in Glass-Reinforced Plastics and Glass Fibres, NIITECHIM, Moscow, p. 10.Google Scholar
  336. 331.
    Method of grinding of fibrous materials. Author’s Certificate of the USSR 1 308 578, ICI CO3 B 37/16 (1987).Google Scholar
  337. 332.
    Kuleshov, E. M. and Kuleshova, V. I. (1976) Aerodynamic Linen-Forming Machines and Devices. Lyogkaya Industriya, Moscow.Google Scholar
  338. 333.
    Melnikov, E. A., Dobroskokin, N. N., Stepanov, A. G. and Shlyakov, Yu. N. (1978) Production of glass powder filler. Plasticheskie Massy, (3), 44–5.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • V. E. Khazanov
  • Yu. I. Kolesov
  • N. N. Trofimov

There are no affiliations available

Personalised recommendations