Carbon fibres

  • A. T. Kaverov
  • M. E. Kazakov
  • V. Ya. Varshavsky
Part of the Soviet Advanced Composites Technology Series book series (SACTS, volume 5)


The more than 30-year-old renaissance in the production of carbon fibres has brought about a noticeable change in their assortment and classification: the numbers of types of raw materials have been reduced, and the basic requirements on the fibres and their fields of application have been determined. However, the wide variety of manufacturing conditions and fields of application of carbon fibres even today dictates the necessity of using different forms of classification.


Carbon Fibre Carbon Fibre Composite Carbon Fibre Material Initial Fibre Carbon Plastic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Geiderikh, M. A., Davidov, B. E. and Krentzel, B. A. (1965) Study of thermal conversions of polyacrylonitrile. Izvestiya Akad. Nauk SSSR, Seriya Khimiya, 4, 636–43.Google Scholar
  2. 2.
    Varshavsky, V. Ya. (1983) Kinetics and mechanism of high-temperature pyrolysis of polyacrylonitrile. Vysokomolekulyarnye Soedineniya, Seriya A, 25 (4), 823–30.Google Scholar
  3. 3.
    Varshavsky, V. Ya. and Lyalyushkin, A. Ya. (1991) Carbon fibres from isotropic petroleum pitch. Khimicheskie Volokna, 3, 10–13.Google Scholar
  4. 4.
    Budnitzky, G. A. (1990) Reinforcing fibres for composite materials. Khimicheskie Volokna, 2, 5–13.Google Scholar
  5. 5.
    Vasiliev, V. V. and Tarnopolsky, Yu. M. (eds) (1990) Kompozitsionnye Materialy, Mashinostroenie, Moscow.Google Scholar
  6. 6.
    Ogava, H. (1989) Carbon fibres. Kogyo Zairyo: Engineering Materials, 37 (1), 29–35.Google Scholar
  7. 7.
    Shimamura, S. (1987) Carbon Fibres. Mir, Moscow.Google Scholar
  8. 8.
    Levit, R. M. (1986) Electrically Conducting Chemical Fibres, Khimiya, Moscow.Google Scholar
  9. 9.
    Nazarov, G. I. and Sushkin V. V. (1980) Heat-Resistant Plastics, Mashinostroenie, Moscow.Google Scholar
  10. 10.
    Levit, R. M. and Raikin, V. G. (1972) Carbon Fibres and Fibrous Materials with Adjustable Electrophysical Properties and Articles Based on Them, NIITEKHIM, Moscow.Google Scholar
  11. 11.
    Rogovin, Z. A. (1964) Principles of Chemistry and Technology of Chemical Fibres, Vol. 1, Khimiya, Moscow/Leningrad, p. 16.Google Scholar
  12. 12.
    Fitzer, E. (1989) PAN-based carbon fibres — present state and trend of technology from the viewpoint of possibilities and limits on influence and control of fibre properties by process parameters. Carbon, 27 (5), 621–45.CrossRefGoogle Scholar
  13. 13.
    Shindo, A. (1973) Carbonization of polymers and production of carbon fibres. Progress of Chemistry, 12 (2), 301–22.Google Scholar
  14. 14.
    Konkin, A. A. (1974) Carbon and Other High-Temperature Fibrous Materials, Khimiya, Moscow.Google Scholar
  15. 15.
    Azarova, M. T. (1991) To the memory of Konkin Alexander Arseniyevich. Khimicheskie Volokna, 3, 5.Google Scholar
  16. 16.
    Serkov, A. T. (1991) Prospects for creation of modern carbon fibres and carbon-reinforced plastics. Khimicheskie Volokna, 2, 60–3.Google Scholar
  17. 17.
    Shindo, A. (1987) Production of carbon fibres and their properties, in Carbon Fibres (ed. S. Shimamura), Mir, Moscow, pp. 27–50.Google Scholar
  18. 18.
    Radushkevich, L. V. and Lukyanovich, V. M. (1952) On carbon structure formed in thermal decomposition of carbon oxide on iron. Zhurnal Fisicheskoy Khimii, 26 (1), 88.Google Scholar
  19. 19.
    Bacon, R. (1960) Growth, structure, and properties of graphite whiskers. Journal of Applied Physics, 31 (2), 283.CrossRefGoogle Scholar
  20. 20.
    Okada, T., Ishioka, M., Matsubara, K. and Endo, M. (1989) Influence of gas-composition on the formation of vapour grown carbon fibres, in Proceedings of 19th Biennial Conference on Carbon, 25–30 June, 1989, University Park, PA, USA, pp. 422–3.Google Scholar
  21. 21.
    Konkin, A. A. (1978) High-temperature (carbon) fibres, in Thermally Stable, Heat-Resistant and Fire-Retardant Fibres (ed. A. A. Konkin), Khimiya, Moscow, pp. 220–340.Google Scholar
  22. 22.
    Stchukin, S. S., Kryazhev, Yu. G. and Sokolovskii, A. A. (1991) Study of ther-mochemical conversions of cellulose triacetate, petroleum pitch and their compositions by differential-thermal and mass-spectrometric analyses. Khimicheskie Volokna, 4, 19–22.Google Scholar
  23. 23.
    Kazakov, M. E. (1991) Main trends of studies in the production of carbon fibre materials based on hydrated-cellulose fibres. Khimicheskie Volokna, 3, 8–10.Google Scholar
  24. 24.
    Stchukin, S. S., Shablygin, M. V., Kryazhev, Yu. G. and Rybakova, S. M. (1990) IR-spectroscopic examinations of thermal conversions of fibres produced from a cellulose triacetate-petroleum pitch composition. Khimicheskie Volokna, 15, 29–32.Google Scholar
  25. 25.
    Kryazhev, Yu. G. (1989) Production of chemical fibres based on polymer–pitch compositions, in Problems and Prospects of Development of the Tomskii Petrochemical Plant, Tomsk, 1989, p. 24.Google Scholar
  26. 26.
    Kaverov, A. T., Morozov, V. G., Chernenko, N. M. et al. (1974) Method of treatment of fibrous material. USSR Inventor’s Certificate 430211, ICl DO6C 7/02.Google Scholar
  27. 27.
    Sosedov, V. P., Kaverov A. T., Morozov V. G. and Aman A. I. (1974) Apparatus for heat treatment of fibrous materials. USSR Inventor’s Certificate 450009, ICl DO6C 7/04, HO5B 3/60.Google Scholar
  28. 28.
    Troitzkaya, N. A. (1988) Hygiene estimates for labour conditions in the production of carbon fibres based on polyacrylonitrile. Gigiena i Sanitariya, 4, 21–5.Google Scholar
  29. 29.
    Fedyakina, R. P., Malinina, E. M., Babenko, E. Ya., et al. (1989) Relation of the physiological action of carbon fibre dust with degree of migration of residual monomers and products of their thermodestruction in model biological media. Gigiena Truda i Professionalnye Zabolevaniya, 4, 53–4.Google Scholar
  30. 30.
    Pakshver, A. B. and Geller, B. E. (1960) Chemistry and Technology of Production of Nitron Fibre, State Scientific Publishing House of Chemical Literature, Moscow, p. 147.Google Scholar
  31. 31.
    Tsiperman, V. L. and Nesterova, L. P. (1984) Polyacrylonitrile Fibres (Types, Properties, Fields of Application, Manufacturers), NIITEKHIM, Moscow, p. 54.Google Scholar
  32. 32.
    Kargin, V. A. and Litvinov, I. A. (1965) Structural conversions on heat treatment of polyacrylonitrile. Vysokomolekulyarnye Soedineniya, 7 (2), 226–8.Google Scholar
  33. 33.
    Volkov, Yu. V., Gorbacheva, V. O. and Fedorkina, S. G. (1976) Morphology of polyacrylonitrile fibre as a function of spinning method. Khimicheskie Volokna, 2, 47–8.Google Scholar
  34. 34.
    Levit, R. M. (1986) Relation between properties of carbon fibres and structure of initial polymers and conditions of carbonization and graphitization, in Special and New Types of Chemical Fibres, Kalinin, Vol. 5, pp. 17–22.Google Scholar
  35. 35.
    Smutkina, Z. S., Pakshver, E. A., Polatovskaya, R. A. et al. (1969) Influence of molecular weight and degree of stretching on pyrolysis and carbonization of polyacrylonitrile, in Structural Chemistry of Carbon and Coals, Nauka, Moscow, pp. 214–19.Google Scholar
  36. 36.
    Chari, S. S., Bahl, O. P. and Mathur, R. B. (1981) Characterization of acrylic fibres used for making carbon fibre. Fibre Science and Technology, 15 (2), 153–60.CrossRefGoogle Scholar
  37. 37.
    Volkov, Yu. V., Gorbacheva, V. A. and Bondarenko, V. M. (1978) Morphological features of polyacrylonitrile fibres as a function of their thickness. Khimicheskie Volokna, 3, 50–1.Google Scholar
  38. 38.
    Thorne, D. J. (1970) Distribution of internal flaws in acrylic fibres. Journal of Applied Polymer Science, 14 (1), 103–13.CrossRefGoogle Scholar
  39. 39.
    Moreton, R. and Watt W. (1974) Tensile strengths of carbon fibres. Nature, 247, 360–1.CrossRefGoogle Scholar
  40. 40.
    Reynolds, W. N. and Moreton, R. (1979) Some factors affecting the strengths of carbon fibres. Philosophical Transactions of the Royal Society of London, Series A, 294, 451–61.CrossRefGoogle Scholar
  41. 41.
    Fitzer, E., Frohs, W. and Heine, M. (1986) Optimization of the processes of stabilization (oxidation) and carbonization of PAN fibres and structural characteristics which define the properties of carbon fibres. Carbon, 24 (4), 387.CrossRefGoogle Scholar
  42. 42.
    Tolks, A. M., Kerch, G. M., Fialkov, A. S et al. (1974) Variation of deformation properties and internal stresses during the heating of polyacrylonitrile fibres within the temperature range 20–400°C. Mekhanika Polimerov, 4, 628.Google Scholar
  43. 43.
    Fitzer, E. and Heym, M. (1976) Carbon fibres — the outlook. Chemistry and Industry, 16, 663–76.Google Scholar
  44. 44.
    DO1F 9/22. High-strength high-modulus carbon fibre. Japan Application 1-306619, ICl4 DO1F 9/14.Google Scholar
  45. 45.
    Method of production of high-strength carbon fibre. Japan Application 63-196722, ICl4 DO1F 9/22.Google Scholar
  46. 46.
    Palatovskaya, R. A., Pakshver, E. A., Pakshver, A. B. et al. (1969) Thermoplastication stretching of PAN fibres, in Synthetic Fibres, Khimiya, Moscow, pp. 120–6.Google Scholar
  47. 47.
    Production of carbon fibres. UK Patent 1324 772 (1973). ICl CO1B 31.Google Scholar
  48. 48.
    Moreton, R. (1971) Spinning of polyacrylonitrile fibres for the production of carbon fibres: the effect of stretching temperature, in Proceedings of International Conference on Carbon Fibres, Their Composites and Applications, London, Paper 12.Google Scholar
  49. 49.
    Sigimund, G., Kaverov, A. T., Bormann, G. et al. (1990) Production and properties of high-strength carbon fibre, in Reports of the Moscow International Conference on Composites, 14–16 November 1990, Part 1, pp. 1–3.Google Scholar
  50. 50.
    Polyacrylonitrile fibre with high strength and modulus of elasticity (ICl4, DO1F 6/18, 6/38, Japan Exlan Co., Ltd), UK Patent 2 165 484.Google Scholar
  51. 51.
    Barsukov, I. A., Huskullin, Serkov, A. T. et al. (1991) Synthesis of high- molecular-weight polyacrylonitrile copolymers and spinning of fibres based on them. Khimicheskie Volokna, 3, 18–19.Google Scholar
  52. 52.
    Romanova, T. A., Medvedev, V. A., Kocharova, L. A. et al. (1991) Production of polyacrylonitrile filaments by spinning in organic baths. Khimicheskie Volokna, 3,15–16.Google Scholar
  53. 53.
    Fialkov, A. S. (1979) Carbon-Graphite Materials. Energiya, Moscow.Google Scholar
  54. 54.
    Varshavsky, V. Ya. (1976) Composite materials based on carbon fibres, in Chemistry and Technology of High-Molecular-Weight Compounds, VINITI, Moscow, pp. 67–120.Google Scholar
  55. 55.
    Runge, Yu. (1981) Thermal Destruction of Polyacrylonitrile. International System of Scientific and Technical Information on Chemistry and Chemical Industry, Issue 4 (100), NIITEKHIM, Moscow.Google Scholar
  56. 56.
    Varshavsky, V. Ya. (1989) Kinetics and Mechanism of Thermal Conversions of PAN Fibres. Industry of Chemical Fibres, NIITEKHIM, Moscow.Google Scholar
  57. 57.
    Kasatochkin, V. I. and Kargin, V. A. (1970) Chemical conversion of oriented polyacrylonitrile. Doklady Akad. Nauk SSSR, 191 (5), 1084–7.Google Scholar
  58. 58.
    Grebe, V., Kaverov, A. T., Barch, D. et al. (1977) Study of thermal oxidation treatment of PAN fibres as a stage in the production of carbon fibres, in Preprints of 2nd International Symposium on Chemical Fibres, Kalinin, Vol.4, pp. 93–112.Google Scholar
  59. 59.
    Azarova, M. T., Konkin, A. A., Bondarenko, V. M. et al. (1974) Study of thermal conversions of polyacrylonitrile fibres, in Preprints of International Symposium on Chemical Fibres, Kalinin, Section 5, p. 56.Google Scholar
  60. 60.
    Watt, W. and Johnson, W. (1975) Mechanism of oxidization of polyacrylonitrile fibres. Nature, 257, 210–12.CrossRefGoogle Scholar
  61. 61.
    Watt W. and Johnson, W. (1970) Carbon fibres from 3 denier polyacrylonitrile textile fibres, in Proceedings of Conference on Industrial Carbon and Graphite, pp. 417–26.Google Scholar
  62. 62.
    Warner, S. B., Peelles, L. H. and Uhemann, D. R. (1979) Oxidative stabilization of acrylic fibres. Part 1. Oxygen uptake and general model. Journal of Materials Science, 14 (3), 556–64.Google Scholar
  63. 63.
    Lapina, N. A., Frolov, V. I. and Ostrovskii, V. S. (1977) Thermal analysis of thermally oxidized polyacrylonitrile fibres, in Structural Materials Based on Carbon, Metallurgiya, Moscow, pp. 79–83.Google Scholar
  64. 64.
    Blazewicz, S. (1989) Carbon fibres from an SO2 treated precursor. Carbon, 27 (6), 777–83.CrossRefGoogle Scholar
  65. 65.
    Fitzer, E. and Heym, N. (1976) Carbon fibres — the outlook. Chemistry and Industry, 16, 663–76.Google Scholar
  66. 66.
    Perret, R. and Ruland, W. (1972) Small-angle scattering of nongraphitic carbons: density fluctuations and ‘non-organized’ carbon, in Proceedings of International Conference: Carbon-72, Baden-Baden, p. 318.Google Scholar
  67. 67.
    Frolov, V. I., Tishenko, I. Ya., Moskalev, L. A. and Sosedov, V. P. (1972) Influence of preliminary oxidizing on structural conversions in polyacrylonitrile fibre. Khimicheskie Volokna, 6, 24–6.Google Scholar
  68. 68.
    Grassie, N. and Scott, G. (1985) Polymer Degradation and Stabilisation. Cambridge University Press, p. 68.Google Scholar
  69. 69.
    Shindo, A. (1971) On the carbonization of acrylic fibres in hydrochloric acid vapour, in Proceedings of 1st International Conference on Carbon Fibres, London, Paper 3.Google Scholar
  70. 70.
    Perepelkin, E. K. (1991) Fibres and fibrous materials with extreme properties. Theory and practical achievements. Khimicheskie Volokna, 4, 27–31.Google Scholar
  71. 71.
    Kulakova, N. A., Freeshberg, A. M. and Kaverov, A. T. (1990) Variation of microstructure and types of defects on heat treatment of PAN fibre, in Reports of the Moscow International Conference on Composites, 14–16 November 1990, Part 1, pp. 45–6.Google Scholar
  72. 72.
    Fourdeux, A., Perret, R. and Ruland, W. (1991) General structural features of carbon fibres, in Proceedings of International Conference on Carbon Fibres, Their Composites and Applications, London, Paper No. 9.Google Scholar
  73. 73.
    Levit, R. M., Kharchevnikov, V. M., Raikin, V. G. et al. (1979) Carbon Fibre Composite Heaters and Experience of Their Application. Leningrad Scientific-Engineering Publishers, Leningrad, pp. 3–20.Google Scholar
  74. 74.
    Japan Chemical Week, 30, 4 (1989).Google Scholar
  75. 75.
    New Materials International, 5 (45), 5 (1990).Google Scholar
  76. 76.
    Goldbaum, E. (1989) Chemistry Week, 144 (13), 13.Google Scholar
  77. 77.
    Edison, T. (1880) US Patent 223 898.Google Scholar
  78. 78.
    Soltes, W. (1961) Conductive fibrous carbon material. US Patent 3 011 981.Google Scholar
  79. 79.
    Abbott, W. (1962) Carbonization fibres. US Patent 3 053 775.Google Scholar
  80. 80.
    Cranch, G. E. (1962) Unique properties of flexible carbon fibres, in Proceedings of the 5th Conference on Carbon, Vol. 11, Pergamon Press, New York, p. 589.Google Scholar
  81. 81.
    Ford, C. E and Mitchell, C. V. (1963) Graphite fibres. US Patent 3 107 152.Google Scholar
  82. 82.
    Tang, M. M. and Bacon, R. (1964) Carbonization of cellulose fibres, low-temperature pyrolysis. Carbon, 2, 211.CrossRefGoogle Scholar
  83. 83.
    Bacon, R. and Tang, M. M. (1964) Carbonization of cellulose fibres. Physical property study. Carbon, 2, 221.CrossRefGoogle Scholar
  84. 84.
    Bacon, R. (1967) Method of production of carbon textile materials. US Patent 3 305 315.Google Scholar
  85. 85.
    Bacon, R. (1973) Carbon fibres from rayon precursors, in Chemistry and Physics of Carbon, Vol. 2, Marcel Dekker, New York, p. 2.Google Scholar
  86. 86.
    Chernenko, N. M., Morozov, V. G., Kaverov, A. T. and Fedoseev S. D. (1975) Ash content of carbon fibres, in Application of Synthetic Materials, Kartya moldavenyaska, Kishinev, pp. 47–52.Google Scholar
  87. 87.
    Miyamichi, K., Kageno, K. and Yosomiya, P. (1986) Influence of inorganic compounds on the output and strength of pyrolysed fibres. Journal of the Society of Fibre Science and Technology of Japan, 42 (8), 444–54.Google Scholar
  88. 88.
    Malei, M. D., Malei, L. S. and Zhuikova, T. N. (1979) High-temperature treatment of current-conducting cores of carbon fibre. Elektrotekhnicheskaya Promyshlennost, 3, 109.Google Scholar
  89. 89.
    Capon, A., Maggs, F. A. P. and Pobins, G. A. (1980) The mechanical properties of activated charcoal cloth. Journal of Physics D: Applied Physics, 13 (6), 9–12.CrossRefGoogle Scholar
  90. 90.
    Konkin, A. A., Kudryavtzev, G. I., Serkov, A. T. and Kupinskii, R. V. (1964) Production of Tyre Cord, Khimiya, Moscow, p. 480.Google Scholar
  91. 91.
    Bosch, A. and Lewin, M. (1974) Journal of Polymer Science, Polymer Chemistry Edition, 12, 2053–63.CrossRefGoogle Scholar
  92. 92.
    Ruland, W. (1967) X-ray studies on preferred orientation in carbon fibres. Journal of Applied Physics, 38, 3585.CrossRefGoogle Scholar
  93. 93.
    Fialkov, A. S. et al. (1968) Influence of the structure of rayon fibre on its pyrolysis. Khimiya Tverdogo Topliva, 3, 116.Google Scholar
  94. 94.
    Volkova, N. S. et al. (1974) Preprints of International Symposium on Chemical Fibres, Kalinin, Section 2, p. 197.Google Scholar
  95. 95.
    Kaverov, A. T. (1987) Physical and chemical principles of production of carbon fibre materials, in Structure and Properties of Carbon Materials, Metallurgiya, Moscow, pp. 74–81.Google Scholar
  96. 96.
    Gibson, D. W. and Langlois, G. B. (1968) Method of producing high-modulus carbon yarn. Polymer Preprints of the American Chemical Society, Division of Polymer Chemistry, 9 (2), 1376–82.Google Scholar
  97. 97.
    Isekil, N. and Spain, M. V. (1968) in Newly Produced Chemical Fibres (eds Z. A. Rogovin and S. P. Papkov), Mir, Moscow, p. 169.Google Scholar
  98. 98.
    Yunitskaya, M. L. and Bizyakina, N. G. (1990) Structure and properties of high-modulus carbon fibre materials based on cellulose-hydrate fibres. Khimicheskie Volokna, 1, 17.Google Scholar
  99. 99.
    Kazakov, M. E., Volkova, N. S. and Bunareva, Z. S. (1991) Carbon fibre materials based on cellulose-hydrate fibres. Khimicheskie Volokna, 4, 4–6.Google Scholar
  100. 100.
    Otani, S. (1972) Carbon fibre. Dyestoph and Chemistry, 17(11), 361–7.Google Scholar
  101. 101.
    Mukhina, T. N., Barabanov, N. L., Babash, S. E. et al. (1987) Pyrolysis of Hydrocarbon Raw Materials, Khimiya, Moscow.Google Scholar
  102. 102.
    Matveichuk, L. S., Berg, G. A., Gymaev, R. N. et al. (1989) Study of thermo-polycondensation of pyrolysis resin. Khimiya Tverdogo Topliva, 6, 111–15.Google Scholar
  103. 103.
    Production of carbon fibre. Japan Application 55–98914 (filed 1979/published 1980).Google Scholar
  104. 104.
    Romey, I. and Hein, M. (1981) Carbon fibres from coal-tar pitch. Fuel, 60(9), 848–50.CrossRefGoogle Scholar
  105. 105.
    Lipovich, V. G., Kalabin, G. A., Kalechits, I. V. et al. (1988) Chemistry and Processing of Coal, Khimiya, Moscow.Google Scholar
  106. 106.
    Yurkevich, Ya. and Rosinskii, S. (1973) Coal Chemistry, Metallurgiya, Moscow.Google Scholar
  107. 107.
    Chukhanov, Z. F. (1978) Use of fuel in energy technology. ENIN, 59, 8–59.Google Scholar
  108. 108.
    Romey, I. (1977) Herstellung von Kohlenstoffasern aus Steinkohlenteerpech. High Temperatures-High Pressures, 9 (2), 181–4.Google Scholar
  109. 109.
    Chistyakov, A. P. and Denisenko, V. I. (1982) Chemical composition of coal-tar pitches. Khimiya Tverdogo Topliva, 5, 82–8.Google Scholar
  110. 110.
    Nabiullina, E. R. and Kudasheva, F. H. (1988) Study of fractions of petroleum asphaltenes. Khimiya i Tekhnologiya Topliva i Masel, 11, 37–9.Google Scholar
  111. 111.
    Brodskii, E. S. (1984) Mass-spectrometric studies of volatiles of coal-tar pitches. Khimiya Tverdogo Topliva, 4, 55–65.Google Scholar
  112. 112.
    Beilin, N. Yu., Kozhueva, E. N., Golubkov O. E. et al. (1990) Study of composition of coal-tar and petroleum pitches by extragraphy. Khimiya Tverdogo Topliva, 5, 132–6.Google Scholar
  113. 113.
    Otani, S. and Yokoyama, A. (1969) Characteristic chemical constitution of pitch materials suitable for the MP-carbon fibres. Bulletin of the Chemical Society of Japan, 42 (5), 1417–24.CrossRefGoogle Scholar
  114. 114.
    Walker, P. L. (1990) Carbon: an old but new material revisited. Carbon, 28 (2/3), 261–79.CrossRefGoogle Scholar
  115. 115.
    Varshavsky, V. Ya., Uchitel, M. L., Braverman, L. P. et al. (1991) Features of supermolecular structure of isotropic petroleum pitch and carbon fibre based on it. Khimicheskie Volokna, 3, 38–41.Google Scholar
  116. 116.
    Haiberg, A. J. (ed.) (1974) Bituminous Materials, Khimiya, Moscow.Google Scholar
  117. 117.
    Syunyaev, Z. I. (1977) Phase Transformations and Their Influence on Production of Petroleum Carbon. TSNIITEneftekhim, Moscow.Google Scholar
  118. 118.
    Syunyaev, Z. I., Syunyaev, R. Z. and Saphieva, R. Z. (1990) Dispersed Petroleum Systems, Khimiya, Moscow.Google Scholar
  119. 119.
    Reynolds, V. V. (1967) Physical Chemistry of Petroleum Solvents, Khimiya, Moscow.Google Scholar
  120. 120.
    Sergienko, S. R., Tainova, B. A. and Talalaev, E. I. (1979) High-Molecular-Weight Non-Hydrocarbon Compounds of Petroleum, Nauka, Moscow.Google Scholar
  121. 121.
    Klar, E. (1971) Polycyclic Hydrocarbons, Vol. 1, Khimiya, Moscow.Google Scholar
  122. 122.
    Pokonova, Yu. V. (1980) Chemistry of High-Molecular-Weight Petroleum Compounds, Leningrad State University.Google Scholar
  123. 123.
    Rand, B. (1987) Pitch precursors for advanced carbon materials — rheological aspects. Fuel, 66 (11), 1491–503.CrossRefGoogle Scholar
  124. 124.
    Semyakina, N. S. and Braverman, L. P. (1989) Rheological properties of high-temperature petroleum pitches. Khimiya Tverdogo Topliva, 6, 131–3.Google Scholar
  125. 125.
    Collett, G. W. and Rand, B. (1978) Thixotropy changes occurring on reheating a coal-tar pitch containing mesophase. Carbon, 16 (6), 477–9.CrossRefGoogle Scholar
  126. 126.
    Edie, D. D. and Dunham, M. G. (1989) Melt spinning pitch-based carbon fibres. Carbon, 27(5), 647–55.CrossRefGoogle Scholar
  127. 127.
    Ryabov, D. V., Suris, T. G., Varshavsky, V. Ya. et al (1991) Study of mechanisms of formation of isotropic pitches. Khimicheskie Volokna, 3, 41–2.Google Scholar
  128. 128.
    Method of production of short carbon fibres. Japan Patent 47–32148.Google Scholar
  129. 129.
    Rotating moulding head. Japan Application 62–53604.Google Scholar
  130. 130.
    Galitsin, V. P., Zubov, L. N. and Rudneva, L. D. (1979) Comparison of methods of oxidizing fibres from petroleum pitches, in Current Problems and Methods of Production of Synthetic Fibres with New Properties, VNIISV, Kalinin, pp. 56–63.Google Scholar
  131. 131.
    Galitsin, V. P., Zubov, L. N. and Glazkovskii, Yu. V. (1977) Chemical and structural transformations of pitch fibres prior to carbonization, in Preprints of 2nd International Symposium on Chemical Fibres, VNIISV, Kalinin, Vol.4, pp.115–24.Google Scholar
  132. 132.
    Method of production of carbon fibres. US Patent 4 314 981.Google Scholar
  133. 133.
    Oxidizing of pitch fibres. Japan Application 63–145423.Google Scholar
  134. 134.
    Otani, S. (1970) Carbon fibres and pitches. Journal of the Japan Petroleum Institute, 13 (6), 438–41.Google Scholar
  135. 135.
    Kowbell, W. and Warner, P. G. (1988) A study of the oxidation of mesophase. Journal of the Physics and Chemistry of Solids, 49 (11), 1279–85.CrossRefGoogle Scholar
  136. 136.
    Denisov, E. T. (1990) Oxidization and Destruction of Carbochain Polymers, Khimiya, Leningrad.Google Scholar
  137. 137.
    Varsharsky, V. Ya. (1992) Production of carbon fibres, in Reinforcing Chemical Fibres for Composite Materials, Khimiya, Moscow pp. 199–329.Google Scholar
  138. 138.
    Brooks, J. D. and Taylor, G. H. (1965) The formation of graphitizing carbons from the liquid phase. Carbon, 3 (2), 185–93.CrossRefGoogle Scholar
  139. 139.
    Papkov, S. P. and Kulichikhin, V. G. (1977) Liquid Crystalline State of Polymers, Khimiya, Moscow.Google Scholar
  140. 140.
    Gimaev, R. N., Gubaidullina, G. Z., Strizhova, L. E. et al. (1980) Kinetics of carbon formation on thermal transformation of petroleum raw material in the liquid phase. Khimiya Tverdogo Topliva, 4, 125–31.Google Scholar
  141. 141.
    Rand, B. (1985) Carbon fibres from mesophase pitch, in Strong Fibres, Elsevier, Amsterdam, pp. 495–575.Google Scholar
  142. 142.
    Zinger, L. S. (1983) High-modulus carbon fibres from mesophase pitches, in Superhigh-Modulus Polymers, Khimiya, Moscow, pp. 188–204.Google Scholar
  143. 143.
    Shulepov, S. V. (1972) Physics of Carbon-Graphite Materials, Metallurgiya, Moscow.Google Scholar
  144. 144.
    Tyan, L. S., Melnikov, N. A., Perepechenikh, V. I. and Galkina, T. Yu. (1976) Study of the liquid crystalline phase of carbonaceous materials by electron paramagnetic resonance. Zhurnal Fisicheskoi Khimii, 50 (10), 2646–7.Google Scholar
  145. 145.
    Syunyaev, Z. I. (1980) Petroleum Carbon, Khimiya, Moscow.Google Scholar
  146. 146.
    Imamura, T., Nakamizo, M. and Hond, H. (1978) Formation of carbonaceous mesophase at lower temperature. Carbon, 16 (6), 487–90.CrossRefGoogle Scholar
  147. 147.
    Azarova, M. T., Semyakina, N. S., Konkin, A. A. and Tikhomirova, N. V. (1982) Carbon fibres based on mesophase pitches. Khimicheskie Volokna, 2, 9–12.Google Scholar
  148. 148.
    Yurkevich, Ya. and Rosinsky, S. (1973) Carbon Chemistry, Metallurgiya, Moscow.Google Scholar
  149. 149.
    Method of obtaining pitch for the production of carbon fibre. Japan Application 2-75695.Google Scholar
  150. 150.
    Chwastiak, S. and Lewis, I. C. (1978) Solubility of mesophase pitch. Carbon, 16(2), 156–7.CrossRefGoogle Scholar
  151. 151.
    Yamaguchi, M., Suzuki, T., Nishizama, T. et al. (1990) Mesophase pitch for high-performance carbon fibre. Kobelco Technology Review, 7, 39–42.Google Scholar
  152. 152.
    Koyama, K., Aoki, K. and Ishizuka, O. (1988) Melt spinning of petroleum mesophase pitches. Sekiyu Gakkaishi, 44 (2), 59–63.Google Scholar
  153. 153.
    Shitov, N. A., Timofeeva, G. I. and Aizenstein, E. M. (1985) Production of ultrathin fibres from a mixture of polymers. Khimicheskie Volokna, 5,12–15.Google Scholar
  154. 154.
    Production of carbon fibre. Japan Application 33-105116.Google Scholar
  155. 155.
    Coal pitch based carbon fibre having high Young’s modulus. US Patent 4775589.Google Scholar
  156. 156.
    Production of articles formed of carbon. Japan Application 64-26721.Google Scholar
  157. 157.
    Edie, D. D., Fox, N. K., Barnett, B. C. et al. (1986) Melt-spun non-circular carbon fibres. Carbon, 24 (4), 477–82.CrossRefGoogle Scholar
  158. 158.
    Magaril, R. Z. (1973) Formation of Carbon on Thermal Transformation of Individual Hydrocarbons and Petroleum Products, Khimiya, Moscow.Google Scholar
  159. 159.
    Zeng Shu-Ming, Korai, Y., Mochida, I. et al. (1990) The creation of a skin-core structure in petroleum derived mesophase pitch based carbon fibre. Bulletin of the Chemical Society of Japan, 63 (7), 2083–6.CrossRefGoogle Scholar
  160. 160.
    Hamada, T., Sajiki, Y., Furuyama, M. et al. (1989) Pitch-based carbon fibres as studied by transmission electron microscopy. Journal of Materials Research, 4 (4), 1027–33.CrossRefGoogle Scholar
  161. 161.
    Takaku, A. and Shioya, M. (1990) X-ray measurements and the structure of polyacrylonitrile and pitch based carbon fibres. Journal of Materials Science, 25 (11), 4873–9.CrossRefGoogle Scholar
  162. 162.
    Perepelkin, K. E. (1966) Some mechanisms for the elastic properties of orientated fibre-forming polymers and fibres. Mekhanika Polimerov, 1, 34–42.Google Scholar
  163. 163.
    Perepelkin, K. E. (1972) Comparative estimation of theoretically achievable strength and rigidity of orientated planar structures. Fisiko-Khimicheskaya Mekhanika Materialov, 8 (2), 74–8.Google Scholar
  164. 164.
    Tumanov, A. T. (ed.) (1973) Monocrystalline Fibres and Materials Reinforced with Them, Mir, Moscow.Google Scholar
  165. 165.
    Fialkov, A. S., Mikhailova, V. A., Polyakova, N. V. et al. (1977) Influence of boron on formation of the structure of high-modulus carbon fibres. Mekhanika Polimerov, 3, 533–5.Google Scholar
  166. 166.
    Method of production of carbon fibres. Japan Application 61-207622.Google Scholar
  167. 167.
    High-strength high-modulus carbon fibres. Japan Patent 53-19690.Google Scholar
  168. 168.
    Johnson, D. J. (1979) Recent advances in studies of carbon fibre structure. Philosophical Transactions of the Royal Society of London, Series A, 294, 443–9.CrossRefGoogle Scholar
  169. 169.
    Fischbach, D. B. and Gilbert, D. W. (1979) Diamagnetic characterization of carbon fibres from pitch mesophase, pitch and polyacrylonitrile. Journal of Materials Science, 14 (7), 1586–92.CrossRefGoogle Scholar
  170. 170.
    Grassie, N. and Hay, J. N. (1962) Thermal coloration and insolubilization in polyacrylonitrile. Journal of Polymer Science, 56,189–202.CrossRefGoogle Scholar
  171. 171.
    Henrici-Olive, G. and Olive, S. (1983) The chemistry of carbon fibre formation from PAN, in Industrial Developments, Springer-Verlag, Berlin, pp. 7–60.Google Scholar
  172. 172.
    Biryukova, G. P., Shablygin, M. V., Mikhailov, N. V. et al. (1973) Structural and chemical transformations of cellulose hydrate as functions of the conditions of the pyrolysis process. Vysokomolekulyarnye Soedineniya, Ser. A, 15 (7), 1573–7.Google Scholar
  173. 173.
    Dobrovolskaya, I. P., Utevsky, L. E. and Chereisky, Z. F. (1978) Pyrolysis activation energy of intercrystalline amorphous sections of cellulose hydrate fibres. Vysokomolekulyarnye Soedineniya, Ser. A, 20 (11), 2538–42.Google Scholar
  174. 174.
    Dobrovolskaya, I. P., Varshavsky, V. Ya. and Utevsky, L. E. (1978) On the appearance of low-angle X-ray reflection in the oxidation of fibres based on polyacrylonitrile. Vysokomolekulyarnye Soedineniya, Ser. B, 20(12), 909–10.Google Scholar
  175. 175.
    Ovchinnikov, A. A., Spector, V. N. and Kyskin, V. I. (1990) Dynamics of X-ray variations of PAN under action of temperature-time factor. Doklady Akad. Nauk SSSR, 314 (3), 656–60.Google Scholar
  176. 176.
    Hinrichsen, G. (1973) On the origin of order-disorder in drawn PAN. Journal of Applied Polymer Science, 17 (11), 3305–21.CrossRefGoogle Scholar
  177. 177.
    Popik, N. L, Milkova, L. P., Kumok, I. L. et al. (1978) Structural transformations under continuous heat treatment of polyacrylonitrile fibre. Vysokomolekulyarnye Soedineniya, Ser. B, 20 (10), 789–91.Google Scholar
  178. 178.
    Varshavsky, V. Ya., Sinaisky, V. M., Grigorenko, L. P. et al. (1975) Variations of thin structure of carbon fibres during high-temperature treatment, in Structure, Properties and Application of Fibrous Materials, VNIIV, Mytistchi, pp. 4–12.Google Scholar
  179. 179.
    Franklin, R. E. (1951) The structure of graphitic carbons. Acta Crystallo-graphica,4 (3), 253–61.CrossRefGoogle Scholar
  180. 180.
    Franklin, R. E. (1951) Crystallite growth in graphitizing and non-graphitizing carbons. Proceedings of the Royal Society of London, Series A, 209,196–218.CrossRefGoogle Scholar
  181. 181.
    Kasatochkin, V. I. and Kaverov, A. T. (1957) Kinetics and mechanism of homogeneous graphitization of carbon. Doklady Akad. Nauk SSSR, 117 (5), 837–40.Google Scholar
  182. 182.
    Kasatochkin, V. I. and Finkelstein, G. B. (1963) Homogeneous and heterogeneous graphitization of carbon. Doklady Akad. Nauk SSSR, 149 (3), 629–32.Google Scholar
  183. 183.
    Stewart, M. (1973) Structural studies in carbon fibres. Journal of the Australian Ceramics Society, 9 (2), 56–60.Google Scholar
  184. 184.
    Krylov, V. N. and Vilk, Yu. N. (1965) Carbon-Graphite Materials and Their Application in the Chemical Industry, Khimiya, Moscow/Leningrad.Google Scholar
  185. 185.
    Kozykina, M. A., Fainberg, E. Z., Papkov, S. P. et al. (1976) Influence of heat treatment conditions on the enthalpies of burning of carbon fibres based on polyacrylonitrile. Vysokomolekulyarnye Soedineniya, Ser. A, 18 (12), 2730–3.Google Scholar
  186. 186.
    Fainberg, E. Z., Kozykina, M. A., Papkov, S. P. et al. (1976) Thermochemical studies of the structure of carbon fibres, in Thermodynamics of Organic Compounds, N. I. Lobachevsky State University, Gorky, pp. 79–83.Google Scholar
  187. 187.
    Kozykina, M. A., Fainberg, E. Z., Papkov, S. P. et al. (1980) Thermochemical studies of carbon fibres based on polyacrylonitrile modified by boron. Vysokomolekulyarnye Soedineniya, Ser. A, 22(11), 2598–603.Google Scholar
  188. 188.
    Nicholas, D. M., Marjoram, J. R. and Wittaker, O. C. (1972) Crystallite size effects on the radial distribution analysis of carbon fibres. Journal of Applied Crystallography, 5 (3), 262–7.CrossRefGoogle Scholar
  189. 189.
    Skripchenko, G. B. and Kasatochkin, V. I. (1969) Study of the mechanism of homogeneous and heterogeneous graphitization, in Structural Chemistry of Carbon and Coals, Nauka, Moscow, pp. 67–77.Google Scholar
  190. 190.
    Frantzevich, I. N. (ed.) (1980) Superhard Materials, Naukova Dumka, Kiev.Google Scholar
  191. 191.
    Kasatochkin, V. I., Sladkov, A. M., Kudryavtzev, Yu. P. et al. (1969) A chain polymer of carbon: carbyne, in Structural Chemistry of Carbon and Coals, Nauka, Moscow, pp. 17–26.Google Scholar
  192. 192.
    Guigon, M. and Oberlin, A. (1986) Heat treatment of high tensile strength PAN-based carbon fibres: microtexture, structure and mechanical properties. Composites Science and Technology, 27 (1), 1–23.CrossRefGoogle Scholar
  193. 193.
    Johnson, W. (1985) The structure of PAN-based carbon fibres and relationship to physical properties, in Strong Fibres, Elsevier, Amsterdam, pp. 391–473.Google Scholar
  194. 194.
    Trushnikov, A. M., Kozykina, M. A., Papkov, S. P. et al. (1982) Study of carbon fibres modified by boron by X-ray photoelectronic spectroscopy. Vysokomolekulyarnye Soedineniya, Ser. A, 24 (11), 865–6.Google Scholar
  195. 195.
    Gibson, D. W. (1973) Heat treatment effects upon the properties of PAN-based carbon fibres, in New Horizons, Materials and Processes, Azussa, California, pp. 165–74.Google Scholar
  196. 196.
    Le Maister, C. W. and Diefendorf, R. J. (1973) The origin of structure in carbonized PAN-fibres, in New Horizons, Materials and Processes, Azussa, California, pp. 158–64.Google Scholar
  197. 197.
    Reynolds, W. N. and Sharp, J. V. (1974) Crystal shear limit to carbon fibre strength. Carbon, 12 (2), 103–10.CrossRefGoogle Scholar
  198. 198.
    Kobetz, L. P. (1975) Study of the stability of physical and mechanical properties of carbon fibres. Mekhanika Polimerov, 3, 430–6.Google Scholar
  199. 199.
    Kochetkov, V. V., Ribakova, T. V., Kumok, I. L. et al. (1991) Structural features and strength of carbon fibres. Khimicheskie Volokna, 1, 47–9.Google Scholar
  200. 200.
    De Lamote, E. and Perry, A. J. (1970) Diameter and strain rate dependence of the ultimate tensile strength and Young’s modulus of carbon fibres. Fibre Science and Technology, 3,159–66.Google Scholar
  201. 201.
    Weibull, W. (1951) A statistical distribution of wide applicability. Journal of Applied Mechanics, 18 (4), 293–7.Google Scholar
  202. 202.
    Korabelnikov, Yu. G., Tamuz, V. P., Siluyanov, O. F. et al (1984) Scale effect of fibre strength and properties of unidirectional composites based on them. Mekhanika Kompozitnykh Materialov, 2,195–200.Google Scholar
  203. 203.
    Grestchuk L. L. (1983) On types of damage of unidirectional composites under compression, in Strength and Damage of Composites (eds J. K. Si and V. P. Tamuzh), Zinantne, Riga, pp. 304–12.Google Scholar
  204. 204.
    Varshavsky, V. Ya. (1977) Evaluation of fibre strength realization in composites, in Mekhanika Kompozitnykh Materialov, No. 1, RPI, Riga, pp. 92–9.Google Scholar
  205. 205.
    Tomas, J. M. (1965) in Chemistry and Physics of Carbon (ed. P. L. Walker), Marcel Dekker, New York, Vol. 1.Google Scholar
  206. 206.
    Shindo, A. (1978) Surface treatment of carbon fibres and composite materials. Engineering Materials, 26 (7), 34, 41–4.Google Scholar
  207. 207.
    Clark, D., Wadsworth, N. J. and Watt, W. (1974) The surface treatment of carbon fibres for increasing the interlaminar shear strength of CFRP, in Proceedings of the International Conference on Carbon Fibres and Their Place in Modern Technology, February 1974, London, Plastics Institute, London, Paper 7.Google Scholar
  208. 208.
    Molleyre, F. and Bastick, M. (1976) Traitement de fibres de carbone par oxydation en phase gazeuse, in Proceedings of Conference Carbon ’76, Deutsche keramische Gesellschaft, Baden-Baden, pp. 500–3.Google Scholar
  209. 209.
    Dayksys, R. Y. (1973) Graphite fibre treatment with effects on fibre surface morphology and epoxy bonding characteristics. Journal of Adhesion, 5 (3), 211–44.CrossRefGoogle Scholar
  210. 210.
    Kobetz, L. P., Konnova, N. F., Varshavsky, V. Ya. et al. (1977) Influence of surface treatment of carbon fibres on the strength of carbon-reinforced plastics under shear, in Aviatsionnye Materialy, ONTI VIAM, Moscow, pp. 63–7.Google Scholar
  211. 211.
    Varshavsky, V. Ya., Galashkova, T. A., Gogoleva, L. L. et al (1978) Production and Properties of Carbon Fibres Based on Various Raw Materials, NIITEKHIM, Moscow.Google Scholar
  212. 212.
    Ehrburger, P. and Donnet, J. B. (1985) Surface treatment of carbon fibres for resin matrices, in Strong Fibres (eds W. Watt and B. V. Perov), Elsevier, Amsterdam, pp. 577–603.Google Scholar
  213. 213.
    Treatment of carbon fibres to improve their bonding characteristics on a resin matrix. US Patent 3 720 536.Google Scholar
  214. 214.
    Carbon fibres with increased affinity with resins. Japan Patent 51-16219.Google Scholar
  215. 215.
    Filamentary material. UK Patent 1 212 826.Google Scholar
  216. 216.
    Modification of carbon fibre surface. US Patent 4 374 114.Google Scholar
  217. 217.
    Surface modification of carbon fibres. US Patent 3 723 607.Google Scholar
  218. 218.
    Surface treatment of carbon fibre. Japan Patent 49-48598.Google Scholar
  219. 219.
    Treatment of carbon fibres. US Patent 3 989 802.Google Scholar
  220. 220.
    Donnet, J. B. and Guilpain, G. (1989) Surface treatments and properties of carbon fibres. Carbon, 27 (5), 749–57.CrossRefGoogle Scholar
  221. 221.
    Polyakova, N. V., Kobetz, L. P., Kuznetzova, M. A. et al. (1977) Influence of air oxidation of high-modulus carbon fibres on properties of carbon-reinforced epoxy plastics, in Aviation Materials, ONTI VIAM, Moscow, pp. 67–73.Google Scholar
  222. 222.
    Tuinstra, F. and Koenig, I. Z. (1970) Characterization of graphite fibre surfaces with Raman-spectroscopy. Journal of Composite Materials, 4, 492–9.Google Scholar
  223. 223.
    Kobetz, L. P., Gunyaev, G. M. and Kuznetzova, M. A. (1977) Improving characteristics of carbon-reinforced epoxy plastics under shear by treatment of carbon fibres in nitric acid, in Aviatsionnye Materialy, ONTI VIAM, Moscow, pp. 74–80.Google Scholar
  224. 224.
    Morita, K., Murata, Y., Ishitani, A. et al. (1981) Characterization of commercially available PAN (polyacrylonitrile)-based carbon fibres. Pure and Applied Chemistry, 58 (3), 455–68.CrossRefGoogle Scholar
  225. 225.
    Verbist, J. J. and Lefebvre, C. (1989) Surface modification of carbon fibres for advanced composite materials. Interfacial Phenomena in Composite Materials’89: Proceedings of International Conference, Sheffield, 5–7 September, pp. 85–7.Google Scholar
  226. 226.
    Cziollek, J. (1987) Struktur und Oberflächeneigenschaften von Kohlenstoffasern. Textilveredlung, 22 (3), 115–21.Google Scholar
  227. 227.
    Vukov, A. J. and Gray, D. J. (1988) Properties of carbon fibre surfaces, in Proceedings of ACS Divisioyt of Polymer Materials Science and Engineering, No. 52, 3rd Chemical Congress for North America, Toronto, June 1988, pp. 917–22.Google Scholar
  228. 228.
    Donnet, J. B., Papirer, E. and Dauksh, H. (1974) Surface modification of carbon fibres and their adhesion to epoxy resins, in Proceedings of International Conference on Carbon Fibres and Their Place in Modern Technology, The Plastics Institute, London, Paper 9.Google Scholar
  229. 229.
    Greulich, H. (1985) Die Verteilungoberfläche zwischen das Faser und der Harz, in Werkstoffauswahl für Verbundstrukturen aus CFK-DFVLR, Mitt.85.09, Institut für Strukturmechanik, Braunschweig, pp. 131–56.Google Scholar
  230. 230.
    Gorbatkina, Yu. A. (1987) Adhesive Strength in Polymer Fibre Systems, Khimiya, Moscow.Google Scholar
  231. 231.
    Tarnopolsky, Yu. M. and Kinuis, T. Ya. (1975) Methods of Static Testing of Reinforced Plastics, 2nd edn, Khimiya, Moscow.Google Scholar
  232. 232.
    Peters, P. V. (1989) A new method to determine fibre-matrix strength, in Interfacial Phenomena in Composite Materials ’89: Proceedings of International Conference, Sheffield, 5–7 September, pp. 59–62.Google Scholar
  233. 233.
    Briefly about markets for carbon and aramid fibres. Function and Material, 9 (4), 11–14.Google Scholar
  234. 234.
    Yamamoto, S. (1988) Carbon fibres from petroleum pitch. Japan Energy and Technology Intelligence, 36 (7), 66–8.Google Scholar
  235. 235.
    Toray Industries Inc. (1985) Product Data Sheet PY-121c (April).Google Scholar
  236. 236.
    Mazuoka, J. (1990) Carbon fibre from PAN. Japan Energy and Technology Intelligence, 38 (9), 92.Google Scholar
  237. 237.
    Berlin, A. A. (ed.) (1988) Carbon Fibres and Carbon-Reinforced Composites, Mir, Moscow.Google Scholar
  238. 238.
    Niederstadt, G. (1975) Verbundstrukturen für die leichte Konstruktionen, in Werkstoffauswahl für Verbundstrukturen aus CFK, Institut für Strukturmechanik, Braunschweig, pp. 9–24.Google Scholar
  239. 239.
    Lubin, J. (ed.) (1988) Reference Book on Composite Materials, 2 vols, Mashino-stroenie, Moscow.Google Scholar
  240. 240.
    Gunyaev, G. M. (1981) Structure and Properties of Polymer Fibre Composites, Khimiya, Moscow.Google Scholar
  241. 241.
    Molynex, M. (1973) Carbon Fibres in Engineering, M. Langley, London, pp. 62–107.Google Scholar
  242. 242.
    Varshavsky, V. Ya. (1977) Composite materials based on carbon fibres, in Chemistry and Technology of High-Molecular-Weight Compounds: Review of Science and Technology, Vol.9, VINITI Akad. Nauk SSSR, Moscow, pp. 161–208.Google Scholar
  243. 243.
    Molchanov, B. I., Kotomin, S. V. and Zakharov, A. V. (1981) Properties of thermoplastic materials filled with carbon fibres, in Reports of 5th All-Union Conference on Composite Materials, Vol. 2, MGU, Moscow, pp. 191–3.Google Scholar
  244. 244.
    Hart, G. L. (1974) Carbon fibres in anti-corrosion applications, in Proceedings of International Conference on Carbon Fibres and Their Place in Modern Technology, The Plastics Institute, London, Paper 34.Google Scholar
  245. 245.
    Zabolotzky, A. A. and Varshavsky, V. Ya. (1984) Polyreinforced (hybrid) composite materials, in Composite Materials: Review of Science and Technology, Vol. 2, VINITI Akad. Nauk SSSR, Moscow.Google Scholar
  246. 246.
    Shorshorov, M. H. (1974) The problem of compatibility in designing composite materials with metal matrix reinforced with high-modulus fibres, in Reports of 3rd All-Union Conference on Composite Materials, Institute of Metallurgy (IMET), Moscow, pp. 6–8.Google Scholar
  247. 247.
    Zabolotzky, A. A. (1984) Quantitative estimation of compatibility of components of fibrous composite materials. Poroshkovaya Metallurgiya, 4, 22–8.Google Scholar
  248. 248.
    Baker, A. A. (1975) Carbon fibre reinforced metals — review of current technology. Materials Science and Engineering, 17 (2), 177–208.CrossRefGoogle Scholar
  249. 249.
    Zabolotzky, A. A. (1979) Production and Application of Composite Materials: Review of Science and Technology, Vol. 1, VINITI Akad. Nauk SSSR, Moscow.Google Scholar
  250. 250.
    Zabolotzky, A. A., Varshavsky, V. Ya., Karimbaev, T. D. et al (1983) Composite materials with aluminium matrix reinforced with carbon fibres. Poroshkovaya Metallurgiya, 4, 59–64.Google Scholar
  251. 251.
    Jones, L. E., Thrower, P. A. and Walker, P. L. (1986) Reactivity and related microstructure of carbon/carbon composites. Carbon, 24, (1), 51–9.CrossRefGoogle Scholar
  252. 252.
    Hill, J., Thomas, C. R. and Walker, E. J. (1974) Advanced carbon-carbon composites for structural applications, in Proceedings of International Conference on Carbon Fibres and Their Place in Modern Technology, The Plastics Institute, London, Paper 19.Google Scholar
  253. 253.
    Dergunova, V. S., Shurshakov, A. N., Levinsky, Yu. V. et al (1974) Interaction of Carbon with Refractory Metals, Metallurgiya, Moscow.Google Scholar
  254. 254.
    Linger, K. R. and Pratchett, A. G. (1977) Carbon fibre composite material for intermediate temperatures. Composites, 7,139–44.CrossRefGoogle Scholar
  255. 255.
    Kostikov, V. I., Kolesnikov, S. A. and Shurshakov, A. N. (1980) Carbon composite materials with ceramic matrix, in Structural Materials Based on Carbon, Vol. 15, Metallurgiya, Moscow, pp. 78–88.Google Scholar
  256. 256.
    Swamy, R. N. and Barr, B. (eds) (1989) Fibre Reinforced Cements and Concretes: Recent Developments, Elsevier, London.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • A. T. Kaverov
  • M. E. Kazakov
  • V. Ya. Varshavsky

There are no affiliations available

Personalised recommendations