Advertisement

Organic fibres as fillers of composite materials

  • G. I. Kudryavtsev
  • I. V. Zhmaeva
Chapter
Part of the Soviet Advanced Composites Technology Series book series (SACTS, volume 5)

Abstract

The development of modern science and technology would have been difficult without the use of new types of high-performance materials. Ranking high among such materials are the high-strength and high-modulus organic fibres and fibrous materials based on them. Without these materials, it would be impossible to design the essential load-bearing elements of various structures such as ropes, radio-engineering equipment, tyres and reinforced plastic materials.

Keywords

Compressive Strength Polymer Fibre Aramid Fibre Organic Fibre Tensile Strength Elongation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Perepelkin, K. E. and Chereiskii, Z. Ju. (1977) Ultimate values of mechanical properties of new varieties of highly oriented polymer materials. Mekhanika Polimerov, 6, 1002–10.Google Scholar
  2. 2.
    Kudryavcev, G. I. and Shein, T. I. (1978) Progress in fields of production and application of high-strength synthetic fibres. Khimicheskie Volokna, 2, 5–15.Google Scholar
  3. 3.
    Papkov, S. P. and Kulichihin, V. G. (1977) Liquid Crystalline State of Polymers, Khimiya, Moscow.Google Scholar
  4. 4.
    Papkov, S. P. (1975) in Theory of Chemical Fibre Spinning (eds G. I. Kudryavcev and S. P. Papkov), VNIIV, Mytischi.Google Scholar
  5. 5.
    Blades, H. (1973) US Patent 3767756.Google Scholar
  6. 6.
    Dobb, M. G., Johnson, D. J. and Saville, B. P. (1977) Direct observation of structure in high-modulus aromatic fibres. Journal of Polymer Science, Polymer Symposium, 58, 237–51.CrossRefGoogle Scholar
  7. 7.
    Ozawa, S. (1987) A new approach to high modulus, high tenacity fibres. Polymer Journal, 19, 119–25.CrossRefGoogle Scholar
  8. 8.
    Cageao, R. A., Schneider, A.-J., Biswas, A. and Blackwell, J. (1990) Chain conformation of the Technora copolyamide. Macromolecules, 23, 2843–8.CrossRefGoogle Scholar
  9. 9.
    Bares, R. A. (1989) State of the art and development trends in organic super fibres. International Polymer Science and Technology, 16, T/51–T/57.Google Scholar
  10. 10.
    Kumar, S. and Helminiak, T. E. (1990) Compressive strength of high performance fibres. SAMPE Journal, 26, 51–61.Google Scholar
  11. 11.
    Zahr, G. E. and Riewald, P. G. (1989) Aramid fibres: an overview. Plastics Compounding, 12, 60–5.Google Scholar
  12. 12.
    Avrorova, L. V., Volokhina, A. V., Glazunov, V. B. et al. (1989) Chemical fibres of the third generation produced in the USSR. Khimicheskie Volokna, 4, 21–6.Google Scholar
  13. 13.
    Budnickij, G. A. (1990) Reinforcing fibres for composite materials. Khimicheskie Volokna, 2, 5–13.Google Scholar
  14. 14.
    Higher performance aramid fibre introduced. Plastics Technology, 33, 12 (1987).Google Scholar
  15. 15.
    Krause, S. J., Vezie, D. L. and Adams, W. W. (1989) Straightening of pleated sheet structure in fibres of poly(p-phenyleneterephthalamide) — Kevlar 149. Polymer Communications, 30, 10–13.Google Scholar
  16. 16.
    Stronger para-aramid fibres announced, Reinforced Plastics, 31, 191 (1987).Google Scholar
  17. 17.
    High-performance aramid fibre. Modern Plastics International, 19, 106 (1989).Google Scholar
  18. 18.
    Yoon, N. S. and Son, T. W. (1984) European Application 104 410.Google Scholar
  19. 19.
    Jin, J.-I., Park, H.-J., Rhim, M.-S. and Kim, S.-M. (1989) Structure of PPTA fibres derived directly from a liquid crystalline prepolymer dope in an organic solvent. Polymer Engineering and Science, 29, 765-8.CrossRefGoogle Scholar
  20. 20. (a)
    Keil, G. and Jakob, F. (1986) BRD Offen 3510685.Google Scholar
  21. 20. (b)
    Herold, F. and Keil, G. (1987) BRD Offen 3605394.Google Scholar
  22. 21.
    Allen, S. R. and Roche, E. J. (1989) Deformation behaviour of Kevlar aramid fibres. Polymer, 30, 996–1003.CrossRefGoogle Scholar
  23. 22.
    Zwaag, S., Northolt, M. G., Young, R. J. et al. (1987) Chain stretching in aramid fibres. Polymer Communications, 28, 276–7.Google Scholar
  24. 23.
    Knoff, W.F. (1987) Relationship between the tensile and shear strength of aramid fibres. Journal of Materials Science Letters, 6, 1392–4.CrossRefGoogle Scholar
  25. 24. (a)
    Hindeleh, A. M. and Abdo, S. M. (1989) Effects of annealing on the cry-stallinity and microparacrystallite size of Kevlar 49 fibres. Polymer, 30, 218–24.CrossRefGoogle Scholar
  26. 24. (b)
    Hindeleh, A. M. and Abdo, S. M. (1989) Relationship between crystalline structure and mechanical properties in Kevlar 49 fibres. Polymer Communications, 30, 184–6.Google Scholar
  27. 25.
    Hindeleh, A. M., Hosemann, R., Hinrichsen, G. and Springer, H. (1990) Paracrystallinity, microparacrystal size and molecular weight distribution of Kevlar 49 fibres, exposed to elevated temperatures. Polymer Communications, 31, 205–8.Google Scholar
  28. 26.
    Tadaoki, J., Tashiro, K., Kobayashi, M. and Tadokoro, H. (1987) X-ray study of lattice tensile properties of fully extended aromatic polyamide fibres over a wide temperature range. Macromolecules, 20, 347–51.CrossRefGoogle Scholar
  29. 27.
    Hindeleh, A. M. (1990) Threshold longitudinal size of paracrystals in Kevlar 49 fibres for securing tensile properties. Polymer Communications, 31, 32–5.Google Scholar
  30. 28.
    Perepelkin, K. E. (1987) Structural features of highly oriented reinforced fibres and their influence on ultimate mechanical properties. Mekhanika Kom-pozitsionnykh Materialov, 3, 387–95.Google Scholar
  31. 29.
    Kudrjavcev, G. I., Tokarev, A. V., Avrorova, L. V. and Konstantinov, V. A. (1974) The super-strength high-modulus synthetic fibre SVM. Khimicheskie Volokna, 6, 70–1.Google Scholar
  32. 30.
    Ericksen, R. H. (1985) Creep of aromatic polyamide fibres. Polymer, 26, 738–45.CrossRefGoogle Scholar
  33. 31.
    Hindeleh, A. M., Hosemann, R., Hinrichsen, G. and Springer, H. (1990) Lateral growth of microparacrystals in Kevlar 49 fibres irradiated by Co60. Journal of Polymer Science, Polymer Physics, 28, 267–79.CrossRefGoogle Scholar
  34. 32.
    Krause, S. J., Haddock, T. B., Vezie, D. L. et al. (1988) Morphology and properties of rigid-rod poly(p-phenylenebenzobisoxazole) (PBO) and stiff-chain poly(2,5(6)-benzoxazole) (AB PBO) fibres. Polymer, 29, 1354–64.CrossRefGoogle Scholar
  35. 33.
    Allen, S. R., Farris, R. J. and Thomas, E. L. (1985) High-modulus-high-strength poly(p-phenylene benzobisthiazole) fibres. Journal of Materials Science, 20, 2727–34.CrossRefGoogle Scholar
  36. 34.
    Allen, S. R., Filippov, A. G., Farris, R. J. et al. (1981) Mechanical studies of high-strength, high-modulus poly(p-phenylene benzobisthiazole) fibres. Macromolecules, 14, 1135–8.CrossRefGoogle Scholar
  37. 35.
    Allen, S. R., Farris, R. J. and Thomas, E. L. (1985) High modulus/high strength poly(p-phenylene benzobisthiazole) fibres. Part 2: structure-property investigations. Journal of Materials Science, 20, 4583–92.CrossRefGoogle Scholar
  38. 36.
    Cohen, J. and Thomas, E. L. (1985) Structure formation during spinning of poly(p-phenylene benzobisthiazole) fibre. Polymer Engineering and Science, 25, 1093–6.CrossRefGoogle Scholar
  39. 37.
    Shimamura, R., Minter, J. R. and Thomas, E. L. (1983) Lattice imaging of high modulus poly(p-phenylene benzobisthiazole) fibres. Journal of Materials Science Letters, 2, 54–8.CrossRefGoogle Scholar
  40. 38.
    Adams, W. W. (1985) The morphology of high-modulus fibres. ACS Polymer Preprints, 26, 306–7.Google Scholar
  41. 39.
    Kudryavcev, G. I. (1990) Some problems of producing super-strength and high-modulus organic fibres. Khimicheskie Volokna, 2, 34–5.Google Scholar
  42. 40.
    Kudes, J. E. (1986) US Patent 4607095.Google Scholar
  43. 41.
    Kumar, S. (1989) Structure and properties of high performance polymeric and carbon fibres-an overview. SAMPLE Quarterly, 20, 3–8.Google Scholar
  44. 42.
    Bazhenov, S. L., Kozey, V. V. and Berlin, A. A. (1989) Compression fracture of organic fibre reinforced plastics. Journal of Materials Science, 24, 4509–15.CrossRefGoogle Scholar
  45. 43.
    Northolt, M. G. (1981) Compressive strength and glass transition temperature. Journal of Materials Science, 16, 2025–8.CrossRefGoogle Scholar
  46. 44.
    Tanner, D., Dhingra, A. and Pigliacampi, J. (1986) Aramid fibre composites for general engineering. Journal of Metals, 38, 21–5.Google Scholar
  47. 45.
    Dobb, M. G., Johnson, D. J. and Saville, B. P. (1981) Compressional behaviour of Kevlar fibres. Polymer 22, 960–5.CrossRefGoogle Scholar
  48. 46.
    De Teresa, S. J., Porter, R. S. and Farris, R. J. (1988) Experimental verification of a microbuckling model for the axial compressive failure of high performance polymer fibres. Journal of Materials Science, 23, 1886–94.CrossRefGoogle Scholar
  49. 47.
    Mammone, J. F. (1986) US Patent 4571411.Google Scholar
  50. 48.
    Marom, G. and Chen, E. J.-H. (1987) Asymmetric hybrid composite: a design concept to improve flexural properties of Kevlar aramid composites. Composite Science and Technology, 29, 161–8.CrossRefGoogle Scholar
  51. 49.
    Sarlin, J., Suokas, E. and Toermaelae, P. (1987) Differential scanning calorimetry and dynamic mechanical studies on a thermotropic naphthalenic-based liquid crystal copolyester. Kemia-Kemi, 14, 1012.Google Scholar
  52. 50.
    High performance fibres of aromatic polyester based liquid crystalline polymer-Econol. Japan Plastics Age, 4, 20 (1986).Google Scholar
  53. 51.
    Calundonn, G. W., Charbonneau, L. F. and Benicewicz, C. (1984) US Patent 4473682.Google Scholar
  54. 52. (a)
    Wakui, T., Yoshino, K., Komatsu, M. et al. (1988) European Application 271929.Google Scholar
  55. 52. (b)
    Calundann G., Charbonneau, L. F. and Benicewicz, B. C. (1984) European Application 102160.Google Scholar
  56. 53.
    Sugimoto, H., Hayatsu, K., Kobashi, T. et al. (1988) European Application 267984.Google Scholar
  57. 54.
    Fukui, K. and Motooka, M. (1987) European Application 237358.Google Scholar
  58. 55. (a)
    Calundann, G. W. (1980) US Patent 4219461.Google Scholar
  59. 55. (b)
    Calundann, G. W. (1981) US Patent 4256624.Google Scholar
  60. 56.
    Ueno, K., Sugimoto, H. and Hayatsu, K. (1985) US Patent 4503005.Google Scholar
  61. 57. (a)
    Frazer, A. H. (1980) US Patent 4226970.Google Scholar
  62. 57. (b)
    Calundann, G. W. and Charbonneau, L. F. (1980) US Patent 4224433.Google Scholar
  63. 58.
    Calundann, G. W. (1981) US Patent 4299756.Google Scholar
  64. 59.
    Blackwell, J., Cheng, H. M. and Biswas, A. (1988) X-ray analysis of the structure of the thermotropic copolyester XYDAR. Macromolecules, 21, 39–45.CrossRefGoogle Scholar
  65. 60.
    Biswas, A. and Blackwell, J. (1988) Three-dimensional structure of main-chain liquid-crystalline copolymers. 3. Chain packing in the solid state. Macromolecules, 21, 3158–64.CrossRefGoogle Scholar
  66. 61.
    Cheng, S. Z. (1988) Kinetics of mesophase transitions in thermotropic copolyesters. 1. Calorimetric study. Macromolecules, 21, 2475–84.CrossRefGoogle Scholar
  67. 62.
    Sawyer, L. C. and Jaffe, M. (1986) The structure of thermotropic copolyesters. Journal of Materials Science, 21, 1897–913.CrossRefGoogle Scholar
  68. 63.
    Morgan, P. W. (1976) BRD Offen 2620351.Google Scholar
  69. 64.
    Morgan, P. W., Kwolek, S. L. and Pletcher, T. C. (1987) Aromatic azomethine polymers and fibres. Macromolecules, 20, 729–39.CrossRefGoogle Scholar
  70. 65.
    Cassidy, P. E. and Aminabhavi, T. M. (1989) Progress in the development of polyimides. Polymer News, 14, 362–8.Google Scholar
  71. 66.
    Ginzburg, B. M., Magdalev, E. T., Volosatov, V. N. and Frenkel, S. a. (1978) Elasticity of crystalline lattices and mechanical properties of polyimides. Mekhanika Polimerov, 5, 781–7.Google Scholar
  72. 67.
    Koton, M. M., Florenskiy, F. S., Frenkel, S. U. et al. (1982) USSR Inventor’s Certificate 765413.Google Scholar
  73. 68.
    Irwin, R. S. (1984) Polyimides for fibre-reinforced composites. ACS Polymer Preprints, 25, 213–14.Google Scholar
  74. 69.
    Agency of Industrial Science and Technology (1984) Japan Unexamined Application 59-157319.Google Scholar
  75. 70.
    Torai Industries Inc. (1989) Japan Unexamined Application 1-6118.Google Scholar
  76. 71.
    Agency of Industrial Science and Technology (1985) Japan Unexamined Application 60-97834.Google Scholar
  77. 72.
    Takuma, J. and Toshikazu, M. (1986) High strength and high modulus poly-imide fibres from chlorinated rigid aromatic diamines and pyromellitic dianhydride. Journal of the Society of Fibre Technology Japan, 42, T/554–T/559.Google Scholar
  78. 73.
    Irwin, R. S. (1987) US Patent 4640372.Google Scholar
  79. 74.
    Grieber, H. and Weinrotter, K. (1989) Erfahrungen mit polyimidfasern in der heissgasfiltration. Lenzinger Berichte, 66, 5–9.Google Scholar
  80. 75.
    Ube Industries (1985) Japan Unexamined Application 60-65112.Google Scholar
  81. 76.
    Ube Industries (1985) Japan Unexamined Application 60-215 812.Google Scholar
  82. 77.
    Keller, A. and Barhom, P. (1981) High modulus fibres. Plastics and Rubber International, 6, 19–26.Google Scholar
  83. 78.
    Smith, P. and Lemstra, P. J. (1980) Ultra-high-strength polyethylene filaments by solution spinning/drawing. Journal of Materials Science, 15, 505-14.CrossRefGoogle Scholar
  84. 79.
    Clark, E. S. and Scott, L. S. (1974) Superdrawn crystalline polymers: a new class of high-strength fibre. Polymer Engineering and Science, 14, 682–6.CrossRefGoogle Scholar
  85. 80.
    Kanamoto, T., Tsuruta, A., Tanaka, K. et al. (1983) On ultra-high tensile modulus by drawing single crystal mats of high molecular weight polyethylene. Polymer Journal, 15, 327–9.CrossRefGoogle Scholar
  86. 81.
    Calundann, G., Jaffe, M., Jones, R. S. and Joon, H. (1988) High performance organic fibres for composites, in Fibre Reinforcements for Composite Materials (ed. A. R. Bunsell), Vol. 2, Elsevier, Amsterdam, pp. 211–48.Google Scholar
  87. 82.
    Savickiy, A. V., Andreeva, G. N., Gorshkova, I. A. et al. (1989) Effect of drawing conditions on strength properties of high-molecular-weight polyethylene fibres. Vysokomolekylyarnye Soedineniya, Ser. A, 31, 1865–71.Google Scholar
  88. 83.
    Smith, P. and Lemstra, P. J. (1982) US Patent 4344908.Google Scholar
  89. 84.
    Kavesh, S. and Prevorsek, D. C. (1985) US Patents 4551296 and 4536536.Google Scholar
  90. 85.
    Ohta, T., Okada, F. and Okumoto, K. (1986) US Patent 4617233.Google Scholar
  91. 86.
    Hoogsteen, W., van der Hooft, R. J., Postema, A. R. et al. (1988) Gel-spun polyethylene fibres. Journal of Materials Science, 23, 3459–66.CrossRefGoogle Scholar
  92. 87.
    Allen, S. R. (1987) Tensile recoil measurement of compressive strength for polymeric high performance fibres. Journal of Materials Science, 22, 853–9.CrossRefGoogle Scholar
  93. 88.
    Advanced composites. Plastics Design Forum, 11,30–1 (1986).Google Scholar
  94. 89.
    Mizuno, T. and Murayama, N. (1985) European Application 133001.Google Scholar
  95. 90.
    Kwon, J. D., Kavesh, S. and Prevorsek, D. C. (1984) European Application 105169.Google Scholar
  96. 91.
    Tanaka, H., Suzuki, M. and Ueda, F. (1985) European Application 146084.Google Scholar
  97. 92.
    Hyon, S.-H. and Ikada, J. (1987) European Application 239044.Google Scholar
  98. 93.
    Kunugi, T., Kawasumi, T. and Ito, T. (1990) Preparation of ultra-high modulus polyvinyl alcohol fibre by the zone drawing method. Journal of Applied Polymer Science, 40, 2101–12.CrossRefGoogle Scholar
  99. 94.
    Kobashi, T. and Takao, S. (1985) US Patent 4535027.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • G. I. Kudryavtsev
  • I. V. Zhmaeva

There are no affiliations available

Personalised recommendations