Advertisement

Inorganic filaments on a substrate: boron and silicon carbide fibres

  • A. M. Tsirlin
Chapter
  • 362 Downloads
Part of the Soviet Advanced Composites Technology Series book series (SACTS, volume 5)

Abstract

Continuous boron monofilaments (BF) and silicon carbide monofilaments (SCF) on substrates are among the main reinforcement fillers for modern high-strength and -modulus composites. They have an outstanding combination of absolute and relative strength characteristics, good resin and metal wettability and high oxidation resistance, and they resist satisfactorily the action of aggressive metals at high temperatures (up to their melting temperatures). This allows their use for reinforcing both polymeric and metallic composites.

Keywords

Silicon Carbide Strength Characteristic Boron Carbide Fibre Strength Tungsten Wire 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Brontman, L. J. and Krock, R. H. (eds) (1967) Modern Composite Materials, Addison-Wesley, Reading, MA.Google Scholar
  2. 2.
    Galasso, F. (1969) High-Modulus Fibres and Composites, Gordon and Breach, New York.Google Scholar
  3. 3.
    Line, L. E. and Henderson, U. V. (1969) Boron filament and other reinforcements by chemical vapour plating, in Handbook of Fibreglass and Advanced Plastics Composites (ed. G. Lubin), Van Nostrand Reinhold, New York, pp. 201–36.Google Scholar
  4. 4.
    Krukonis, V. G. (1977) Boron filaments, in Handbook of Fillers and Reinforcements for Plastics (eds G. V. Milweski and H. S. Katz), Van Nostrand Reinhold, New York, pp. 545–61.Google Scholar
  5. 5.
    Zhigach, A. F. and Tsirlin, A. M. (1978) Physico-chemical properties and strength characteristics of boron filaments, and prospects for their employment for reinforcing composite materials. Zh. Vsesoyuznogo Khim. ob-va im. Mendeleyeva, 23 (3), 254–72.Google Scholar
  6. 6.
    De Bolt, H. (1982) Boron and other reinforcing agents, in Handbook of Composites (ed. G. Lubin), Van Nostrand Reinhold, New York, pp. 171–95.CrossRefGoogle Scholar
  7. 7.
    Wawner, F. E. (1988) Boron and silicon carbide/carbon fibres, in Composite Materials Series, Vol. 2 (ed. A. R. Bunsell), Elsevier Applied Science, Barking, pp. 371–425.Google Scholar
  8. 8.
    De Bolt, H. E., Krukonis, V. J. and Wawner, F. E. (1973) High strength, high modulus silicon carbide filaments via chemical vapour deposition, in Proceedings of the 3rd International Conference on SiC (eds R. B. Marshall, J. W. Faust and C. E. Ryan), University of South Carolina Press, pp. 168–75.Google Scholar
  9. 9.
    Henshaw, J., Cornie, G. and Suplinskas, R. (1981) Composite materials at Avco Specialty Materials, in Proceedings of the 1st Conference of European SAMPE, Kann.Google Scholar
  10. 10.
    Tsirlin, A. M. (1985) Boron filaments, in Handbook of Composites, Vol. 1 (eds W. Watt and B. V. Perov), North-Holland, Amsterdam, pp. 155–200.Google Scholar
  11. 11.
    Budnitskii, G. A. (1989) Reinforcing fibres for composite materials. Zh. Vsesoyuznogo Khim. ob-va im. Mendeleyeva, 34, 438–46.Google Scholar
  12. 12.
    Tsirlin, A. M. (1992) Inorganic Fibres for Composite Materials, Metallurgiya, Moscow.Google Scholar
  13. 13.
    Boron, Silicon Carbide and Alumina Fibres Composite Materials, Avco Specialty Materials Division-Textron, Lowell, MA (1986).Google Scholar
  14. 14.
    Di Carlo, G. A. (1985) Fibres for structurally reliable metal and ceramic composites. Journal of Metals, June, 44–9.Google Scholar
  15. 15.
    Samsonov, G. V. and Tsagareishvili, G. V. (1974) State of the art, and main directions of research into boron production methods, structure and properties, in Boron: Production, Structure and Properties, Nauka, Moscow, pp. 5–14.Google Scholar
  16. 16.
    Tsirlin, A. M. (1978) Evaluation of boron filaments by morphology and fractography characteristics. Fizika i Khimiya Obrabotki Materialov, 6, 78–94.Google Scholar
  17. 17.
    Wawner, F. E., Teng, A. Y. and Nutt, S. R. (1983) Microstructural characterization of SiC (SCS) filaments. SAMPE Quarterly, 14 (3), 39–44.Google Scholar
  18. 18.
    Nutt, S. R. and Wawner, F. E. (1985) Silicon carbide filaments: microstructure. Journal of Materials Science, 20 (6), 1953–60.CrossRefGoogle Scholar
  19. 19.
    Mittnick, M. A. and McElman, J. (1988) Continuous silicon carbide fibre reinforced metal matrix composites, in Proceedings of the 27th Annual Conference of Metallurgists, CIM, Montreal, pp. 395–404.Google Scholar
  20. 20.
    Crane, R. and Krukonis, V. (1975) Strength and fracture properties of silicon carbide filaments. Ceramics Bulletin, 54 (2), 184–8.Google Scholar
  21. 21.
    Le Petitcorps, Y., Lahaye, M., Pailler, R. and Naslain, R. (1988) Modem boron and SiC CVD filaments: a comparative study. Composites Science and Technology, 32, 31–55.CrossRefGoogle Scholar
  22. 22.
    Martineau, P., Lahaye, M., Pailler, R. et al. (1984) SiC filament titanium matrix composites regarded as model composites. Part 1: filament micro-analysis and strength characterization. Journal of Materials Science, 19 (7), 2731–48.CrossRefGoogle Scholar
  23. 23.
    Di Carlo, J. A. (1978) Mechanical and physical properties of modern boron fibres, in Proceedings of the 2nd International Conference on Composite Materials, Metallurgical Society of the AIME, pp. 766–78.Google Scholar
  24. 24.
    Chernishova, T. A., Tsirlin, A. M., Gevlich, S. O. et al (1985) Influence of surface state on calorized boron filament strength. Poroshkovaya Metallurgiya, 3, 39–43.Google Scholar
  25. 25.
    Chernishova, T. A., Tylkina, M. L. and Maslov, L. I. (1990) Dissipation processes by boron fibre/epoxy matrix fracture, in Proceedings of International Conference on Advances in Composite Materials, ASM Indian Chapter, Bombay.Google Scholar
  26. 26.
    Tsirlin, A. M., Khodov, G. Ya., Zhigach, A. F. et al (1979) The electrical resistance of boron and of tungsten borides in boron filaments. Journal of Less-Common Metals, 67 (1), 137–41.CrossRefGoogle Scholar
  27. 27.
    McClintock, F. and Argon, A. (1970) Material Deformation and Failure. Mir, Moscow.Google Scholar
  28. 28.
    Tsirlin, A. M., Zhigach, A. F. and Shetefilina, E. A. (1979) Fractographic characteristics of boron filaments, in Composite Materials (ed. E. M. Sokolovskaya), Moscow University Press, pp. 104–20.Google Scholar
  29. 29.
    Yerasov, V. S., Pirogov, Ye. N., Konoplenro, V. N. et al. (1982) Influence of temperature on mechanical characteristics of boron filaments. Mekhanika Kompozitnykh Materialov, 2, 195–9.Google Scholar
  30. 30.
    Akimkin, V. A., Marukhin, A. P., Tsirlin, A. M. et al. (1981) Changes in strength characteristics of boron filaments on annealing. Fizika i Khimiya Obrabotki Materialov, 6, 150–4.Google Scholar
  31. 31.
    Morin, D. (1974) Filament de bore revêtus de carbure de bore pour l’elaboration de matériaux composites a matrice métallique. Verre Textile Plastiques Renforcés, 3, 16–21.Google Scholar
  32. 32.
    Krukonis, V. (1977) Boron filaments, in Boron and Refractory Borides (ed. V. I. Matkovich), Springer-Verlag, Berlin, pp. 518–40.Google Scholar
  33. 33.
    Mileyko, S. T., Sorokin, N. M., Tsirlin, A. M. (1973) Boron—aluminium composite with brittle fibre strength. Mekhanika Polimerov, 5, 840–6.Google Scholar
  34. 34.
    Roshkovan, G. P., Zhigach, A. F., Samosudov, P. A. et al. (1976) Examination of physical and chemical properties of boron filaments of various diameters. Mekhanika Polimerov, 5, 819–24.Google Scholar
  35. 35.
    Shorshorov, M. H., Kolpashnikov, A. I., Kostikov, V. I. et al. (1981) in Fibre Composite Materials with Metallic Matrix (ed. M. H. Shorshorov), Mashino-stroyeniye, Moscow.Google Scholar
  36. 36.
    Semionov, B. I., Kruglov, S. K. and Tishchenkova, E. F. (1981) Examination of the strength and failure on extension of wires reinforced with steel and boron fibres, in Composite Materials (ed. A. I. Manokhin), Nauka, Moscow, pp. 82–8.Google Scholar
  37. 37.
    Whatley, W. J. and Wawner, F. E. (1985) Kinetics of the reaction between SiC (SCS-6) filaments and Ti (6Al-4V) matrix. Journal of Materials Science Letters, 4, 173–5.CrossRefGoogle Scholar
  38. 38.
    Salibekov, S. E., Sakharov, V. V. and Romanovich, I. V. (1978) Investigation of the early stages of the interaction of boron fibres with aluminium. Metallovedeniye i Termicheskaya Obrabotka Metallov, 10, 42–4.Google Scholar
  39. 39.
    Chernishova, T. A. and Rebrov, A. V. (1986) Interaction kinetics of boron carbide and silicon carbide with liquid aluminium. Journal of Less-Common Metals, 117, 203–7.CrossRefGoogle Scholar
  40. 40.
    Metcalf, A. G. (1978) Fibre-reinforced titanium alloys, in Composite Materials, Vol.4 (ed. K. Kreider), Mashinostroyeniye, Moscow, pp. 277–337.Google Scholar
  41. 41.
    Guzey, L. S., Khritokhin, P. A., Sedmerova, V. D. and Sokolovskaya, E. M. (1980) Investigation of matrix—fibre interaction in fibre composite materials with aluminium matrix. Fizika i Khimiya Obrabotki Materialov, 2, 132–6.Google Scholar
  42. 42.
    Portnoy, K. I., Salibekov, S. E., Svetlov, I. L. and Chubarov, V. M. (1979) Composite Materials Structure and Properties, Mashinostroyeniye, Moscow.Google Scholar
  43. 43.
    Kolpashnikov, A. I., Arefiev, B. A. and Manuilov, V. F. (1982) Composite Materials Deformation. Metallurgiya, Moscow.Google Scholar
  44. 44.
    Kosolapova, T. Ya. (ed.) (1986) Properties, Production and Use of Refractory Compounds, Metallurgiya, Moscow.Google Scholar
  45. 45.
    Emiashev, A. V. (1987) Gas-Phase Metallurgy of Refractory Compounds, Metallurgiya, Moscow.Google Scholar
  46. 46.
    Biloni, H. (1987) Solidification, in Physical Metallurgy, Vol.2, Metallurgiya, Moscow, pp. 187–275.Google Scholar
  47. 47.
    Chernishova, T. A., Rebrov, A. V., Gevlich, S. O. and Tutmer, E. A. (1985) Kinetics of interphase interaction in B−Al and B/B C−Al systems. Fizika i Khimiya Obrabotki Materialov, 4, 94–6.Google Scholar
  48. 48.
    Chernishova, T. A., Tsirlin, A. M., Hodov, G. Y. et al. (1990) Interaction of boron fibres with aluminium melts, in Proceedings of the International Conference on Advances in Composite Materials, ASM, Indian Chapter, Bombay.Google Scholar
  49. 49.
    Chernishova, T. A., Gevlich, S. O., Rebrov, A. V. and Tylkina, M. N. (1988) Formation of brittle media at the interphase boundary of boron fibre and boron with the boron carbide boundary coating — aluminium melt. Poroshkovaya Metallurgiya, 6, 86–9.Google Scholar
  50. 50.
    Chernishova, T. A., Tylkina, M. I., Arsentieva, M. P. and Aleshina, T. D. (1987) Alloy additive segregation on boron fibre calorizing. Rasplavy, 1 (4), 103–10.Google Scholar
  51. 51.
    Dziadykiewic, Yu. V. and Burykina, A. L. (1975) Formation of intermediate phases in the W−SiC−Ti system on annealing, in High-Temperature Carbides, Naukova Dumka, Kiev, pp. 133–5.Google Scholar
  52. 52.
    Sokolovskaya, E. M., Guzey, L. S., Zaitsev, B. G. et al. (1980) Component interaction kinetics in a titanium alloy—silicon carbide composite. Fizika i Khimiya Obrabotki Materialov, 1, 134–6.Google Scholar
  53. 53.
    Fitzer, E. and Jakobsen, G. (1982) Strengthening effect and interfacial adhesion of boron and silicon carbide fibre reinforced aluminium, in Progress in Science and Engineering of Composites (eds T. Hayashi et al), Tokyo, pp. 1315–22.Google Scholar
  54. 54.
    Kostikov, V. I., Shesterin, Yu. A., Milov, V. P. et al. (1978) Possibility of producing fibre-based composites with refractory matrix by plasma spraying. Fizika i Khimiya Obrabotki Materialov, 2, 142–6.Google Scholar
  55. 55.
    Sewyer, L. C, Chen, R. T., Haimbach, F. et al. (1986) Thermal stability characterization of SiC ceramic fibres: fractography and structure, in Ceramic Engineering Science Proceedings, Vol. 7, American Ceramics Society, Columbus, Ohio, pp. 914–30.Google Scholar
  56. 56.
    Vega-Boggio, J. and Wingsboro, O. (1978) Boron fibres, tensile strength, fracture nucleation and material parameters, in Proceedings of 2nd International Conference on Composite Materials, Metallurgical Society of the ASME, Toronto, pp. 900–26.Google Scholar
  57. 57.
    Layden, G. K. (1973) Fracture behaviour of boron filaments. Journal of Materials Science, 8, 1581–9.CrossRefGoogle Scholar
  58. 58.
    Andersson, C. H. and Warren, R. (1984) Silicon carbide fibres and their potential for use in composite materials. Part 1. Composites, 15 (1), 16–24.CrossRefGoogle Scholar
  59. 59.
    Shorshorov, M. Kh., Ustinov, L. M., Tsirlin, A. M. et al. (1979) Brittle interface layers and the tensile strength of metal matrix—fibre composites. Journal of Materials Science, 14, 1850–61.CrossRefGoogle Scholar
  60. 60.
    Shorshorov, M. Kh., Tsirlin, A. M, Ustinov, L. M. et al. (1976) Influence of brittle interface layer on ceramic fibre composite strength. Fizika i Khimiya Obrabotki Materialov, 1, 119–26.Google Scholar
  61. 61.
    Ustinov, L. M. (1979) Influence of brittle mantles on fibre strength. Fizika i Khimiya Obrabotki Materialov, 5, 82–6.Google Scholar
  62. 62.
    Ochiai, S. and Murakami, U. (1982) The tensile strength of silicon carbide coated boron fibres as a function of the thickness of the coating. Zeitschrift für Metallkunde, 73 (4), 229–31.Google Scholar
  63. 63.
    Di Carlo, J. A. (1977) Time—temperature—stress dependence of boron fibre deformation, in Composite Materials: Testing and Design, ASTM, pp. 443–65.Google Scholar
  64. 64.
    Di Carlo, J. A. (1976) An elastic deformation of boron fibres. Scripta Metallurgica, 10 (2), 115–19.CrossRefGoogle Scholar
  65. 65.
    Behrendt, D. R. (1980) Calculation of residual principal stresses in CVD boron on carbon filaments, in Ceramics Engineering Science Proceedings, Vol. 1, American Ceramics Society, Cocoa Beach, FL, pp. 658–70.Google Scholar
  66. 66.
    Di Carlo, J. A. and Williams, W. (1980) Dynamic modulus and damping of boron, silicon carbide and alumina fibres, in Ceramics Engineering Science Proceedings, Vol. 1, American Ceramics Society, Cocoa Beach, FL, pp. 671–92.Google Scholar
  67. 67.
    Di Carlo, J. A. (1980) Predicting the time—temperature dependent axial failure of B−Al composites, in Proceedings of the Symposium on Failure Modes in Composites, Metallurgical Society of the AIME, Las Vegas.Google Scholar
  68. 68.
    Tsirlin, A. M., Shchetilina, E. A., Obolensky, A. V. et al. (1982) Investigation of the residual stresses in boron fibres. Mekhanika Kompozitnykh Materialov, 18 (5), 771–4.Google Scholar
  69. 69.
    Mehalso, R. M. (1974) Chemical vapour deposition of boron on a carbon monofilament substrate: a study of residual stresses and deposition kinetics. PhD Thesis, Rensslaer Polytechnic Institute, Troy, NY.Google Scholar
  70. 70.
    Diffendorf, R. J. and Mehalso, R. M. (1971) Carbon monofilament as a substrate for CVD filament, in Advanced Materials Composites and Carbon, American Ceramics Society, pp. 51–8.Google Scholar
  71. 71.
    Wawner, F. E., Eason, J. W., De Bolt, H. E. and Suplinskas, R. D. (1980) Some aspects of boron filament elongation. Ceramics Engineering and Science Proceedings, 1 (7–8A), 340–7.CrossRefGoogle Scholar
  72. 72.
    Eason, J., Johnson, R. and Wawner, F. (1980) Model for the elongation of boron on tungsten during chemical vapour deposition. Ceramics Engineering and Science Proceedings, 1 (7–8), 693–700.Google Scholar
  73. 73.
    Di Carlo, J. A. and Wagner, T. C. (1981) Oxidation-induced contraction and strengthening of boron fibres, in Proceedings of 5th Annual Conference on Composites and Advanced Materials, American Ceramics Society, Merrit Island, FL, pp. 872–93.Google Scholar
  74. 74.
    Prewo, K. M. (1974) Anelastic creep of boron fibres. Journal of Composite Materials, 8 (10), 411–14.CrossRefGoogle Scholar
  75. 75.
    Prilutsky, E. V., Gridneva, I. V., Milman, Yu. V. et al. (1979) Mechanical properties of silicon carbide. Fizika i Khimiya Obrabotki Materialov, 5, 125–8.Google Scholar
  76. 76.
    Prilutsky, E. V. and Fedorus, V. B. (1975) Mechanical properties of silicon carbide fibres, in High-Temperature Carbides, Naukova Dumka, Kiev, pp. 11–179.Google Scholar
  77. 77.
    Prilutsky, E. V. and Fedorus, V. B. (1975) Structure and properties of silicon carbide fibres, in High-Temperature Carbides, Naukova Dumka, Kiev, pp. 74–6.Google Scholar
  78. 78.
    Di Carlo, J. (1986) Creep of chemically vapour deposited SiC fibres. Journal of Materials Science, 21, 217–24.CrossRefGoogle Scholar
  79. 79.
    Obolensky, A. V., Khodov, G. Ya., Tsirlin, A. M. and Shemayev, B. I. (1991) The strengthening of boron fibres by boron carbide coating, in Proceedings of Moscow International Conference on Composites (MICC-90), Elsevier, London, pp. 989–91.Google Scholar
  80. 80.
    Obolensky, A. V. and Tsirlin, A. M. (1991) Strengthening boron fibres by electric polishing. Mekhanika Kompozitnykh Materialov, 1, 163–7.Google Scholar
  81. 81.
    Japan Chemical Week, 25, 2–3 (1984).Google Scholar
  82. 82.
    Wawner, F. E., De Bolt, H. E. and Suplinskas, R. B. (1980) CVD-produced boron filaments. Ceramic Engineering and Science Proceedings, 1 (7–8), 348–55.CrossRefGoogle Scholar
  83. 83.
    Hwan, L., Suib, S. and Galasso, F. (1989) Silicon carbide-coated boron fibres, Journal of the American Ceramics Society, 72 (7), 1259–61.CrossRefGoogle Scholar
  84. 84.
    Gruber, P. E. (1970) The kinetics of the chemical vapour deposition, in Proceedings of 2nd International Conference on CVD (eds J. M. Blocher and J. C. Withers), The American Electrochemical Society, New York, pp. 25–36.Google Scholar
  85. 85.
    Carlton, H. E., Oxley, J. H., Hall, E. H. and Blocher, J. M. (1970) Kinetics of the hydrogen reduction of boron trichloride to boron, in Proceedings of 2nd International Conference on CVD (eds. J. M. Blocher and J. C. Withers), The American Electrochemical Society, New York, pp. 209–25.Google Scholar
  86. 86.
    Vendenbulcke, L. (1979) Mass-transfer, equilibrium and kinetics in the CVD of a poly component system: application to boron—carbon, in Proceedings of 7th International Conference on CVD, The American Electrochemical Society, Princeton, pp. 315–31.Google Scholar
  87. 87.
    Carlson, J. O. (1980) Deposition rate and rate-limiting steps in the chemical vapour deposition of boron in a closed system. Journal of Less-Common Metals, 71 (1), 1–14.CrossRefGoogle Scholar
  88. 88.
    Carlson, J. O. (1980) Models for interpreting deposition rate data from a closed chemical vapour deposition system. Journal of Less-Common Metals, 71 (1), 15–32.CrossRefGoogle Scholar
  89. 89.
    Michaelidis, M. and Pollard, R. (1984) Analysis of chemical vapour deposition of boron. Journal of the Electrochemical Society, 131 (4), 860–8.CrossRefGoogle Scholar
  90. 90.
    Tsirlin, A. M., Fedorova, T. V and Florina, E. K. (1984) Experimental study of the kinetics of boron vapour deposition on preheated substrate. Fizika i Khimiya Obrabotki Materialov, 3, 99–107.Google Scholar
  91. 91.
    Tsirlin, A. M., Fedorova, T. V. and Florina, E. K. (1985) Boron chemical vapour deposition macrokinetics, in Elemento-organic Compounds Technology and Physical and Chemical Studies, NIITEKHIM, Moscow, pp. 3–17.Google Scholar
  92. 92.
    Tsirlin, A. M. (1988) Boron chemical vapour deposition. Itogi Nauki. Kinetika i Kataliz., 18, 217–80.Google Scholar
  93. 93.
    Vanderbulcke, L. and Vnillard, G. (1981) Kinetics in the chemical vapour deposition of boron carbide, in Proceedings of 8th International Conference on CVD, American Electrochemical Society, Princeton, pp. 95–103.Google Scholar
  94. 94.
    Morin, D. (1976) Boron carbide-coated boron filaments reinforcement in aluminium alloy matrices. Journal of Less-Common Metals, 47 (1), 207–13.CrossRefGoogle Scholar
  95. 95.
    Ivanova, L. M. and Pletiushkin, V. A. (1968) Methylchlorosilane vapour chemical decomposition. Izv. Akad. Nauk SSSR Neorg. Materialy, 4 (7), 1089–93.Google Scholar
  96. 96.
    Fedoseyev, D. V., Chuzhko, R. K. and Grivtsev, A. G. (1978) Heterogeneous crystallization from the gas phase, in Kinetic Problems and Numerical Modelling, Nauka, Moscow, pp. 28–32.Google Scholar
  97. 97.
    Gorbov, M. M. and Tsirlin, A. M. (1976) Capacitance instruments for measuring the diameter of electrically conducting filaments. Khim. Volokna, 4, 69–71.Google Scholar
  98. 98.
    Zhigach, A. F., Tsirlin, A. M., Shchetilina, E. A. et al (1973) Mechanical properties of boron filaments. Mekhanika Polimerov, 4, 641–7.Google Scholar
  99. 99.
    Guniayev, G. M., Kobets, L. P. and Zaytsev, G. G. (1976) Determining the mean values of carbon fibre mechanical properties from carbon plastic test results. Problemy Prochnosti, 8, 36–40.Google Scholar
  100. 100.
    Zabolotsky, A. A., Sladkov, V. K., Sakharov, V. V. and Salibekov, S. E. (1978) Evaluating fibre strength using the dry bundle method. Poroshkovaya Metallurgiya, 4, 51–5.Google Scholar
  101. 101.
    Grigoriev, V. I., Zhigach, A. F. and Tsirlin, A. M. (1972) Quality analysis and statistical control of boron filaments, in Metallic Composite Materials, ONTI VIAM, Moscow, pp. 228–36.Google Scholar
  102. 102.
    Fedorovskaya, T. S. (1988) Progressive types of inorganic reinforcement fibres, in Chemical Industry Abroad: A Survey, NIITEKHIM, Moscow, pp. 38–56.Google Scholar
  103. 103.
    Perov, B. V. (1989) Composite materials in aircraft engineering. Zh. Vsesoyuznogo Khim. ob-va im. Mendeleyeva, 43 (5), 476–82.Google Scholar
  104. 104.
    Lubin, J. (ed.) (1988) Composite Materials Handbook, Mashinostroyeniye, Moscow, pp. 447 and 580.Google Scholar
  105. 105.
    Ozawa, E., Shoita, I. and Watanabe, O. (1982) Bending characteristics of boron—aluminium composites, in Progress in Science and Engineering of Composites (eds T. Hayashi, K. Kawata and S. Umekawa), Tokyo.Google Scholar
  106. 106.
    Kawata, T. (1982) Mechanical behaviours of aluminium alloys reinforced with B and SiC filaments and properties of B−Al alloy composite as high speed rotor cylinder, in Progress in Science and Engineering of Composites (eds T. Hayashi, K. Kawata and S. Umekawa), Tokyo.Google Scholar
  107. 107.
    Berezin, A. V., Lutzau, V. G., Babin, Yu. A. et al. (1986) Analysis of the possibility of composite use in harvesters in order to reduce weight. Mashinovedeniye, 6, 90–3.Google Scholar
  108. 108.
    Ivanov, S. N. and Sokolov, O. V. (1986) Cardan shafts with composite tubes. Avtomobilnaya Promyshlennost, 1, 19–20.Google Scholar
  109. 109.
    Nepershin, R. I. and Klimekov, V. V. (1986) Optimal design of some automobile elements of fibrous polymeric composites. Mashinovedeniye, 6, 684–9.Google Scholar
  110. 110.
    Avco Corp. Systems Division (1976) Why Boron?Google Scholar
  111. 111.
    Berghof-Sigma Verbund-Werkstoffe, Faser-Verbund Werkstoffe mit Hochleistungensfasern aus Silicium Carbide Filaments, Technische Information (1986).Google Scholar
  112. 112.
    Bouix, J., Vincent, H., Boubehira, M. and Viala, J. C. (1986) Titanium diboride-coated boron fibre for aluminium matrix composites. Journal of Less-Common Metals, 117, 83–9.CrossRefGoogle Scholar
  113. 113.
    Tsirlin, A. M. and Semionov, B. I. (1991) Boron fibre properties evolution in its making and in composite materials processing, in Proceedings of Moscow International Conference on Composite Materials (MICC-90), Elsevier, London, pp. 238–42.Google Scholar
  114. 114.
    Wawner, F. E. and McCoy, J. W. (1989) The origin of the ‘crack tip’ mode of failure in boron filaments. Journal of Materials Science, 24 (7), 2305–8.CrossRefGoogle Scholar
  115. 115.
    Tsirlin, A. M., Obolenskii, A. V. and Khodov, G. Ya. (1991) The strengthening of boron fibres by polishing of tungsten wire surface, in Proceedings of the Moscow International Conference on Composites (MICC-90), Elsevier, London, pp. 190–3.Google Scholar
  116. 116.
    US Patent 4315968 (1982).Google Scholar
  117. 117.
    Textron Specialty Materials (1989–90) Silicon Carbide Fibre, Metal Matrix and Ceramic Composite Materials, Technical Documentation, Lowell, MA.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • A. M. Tsirlin

There are no affiliations available

Personalised recommendations