Advertisement

Inorganic silicon carbide, Tyranno and silicon nitride fibres without substrate

  • A. M. Tsirlin
Chapter
  • 362 Downloads
Part of the Soviet Advanced Composites Technology Series book series (SACTS, volume 5)

Abstract

High-strength and high-modulus inorganic fibres from silicon carbide and silicon nitride of various modifications may be obtained without use of substrates by forming from melts or solutions of elemento-organic polymers with subsequent heat and chemical treatment. They have been referred to as ‘coreless’ fibres.

Keywords

Silicon Carbide Fibre Property Ceramic Fibre Silicon Carbonitride Silicon Carbide Fibre 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yajima, S. (1985) Silicon carbide fibres, in Handbook of Composites, Vol. 1 (eds W. Watt and B. V. Perov), North-Holland, Amsterdam, pp. 201–40.Google Scholar
  2. 2.
    Yamamura, T., Hurushima, T., Kimoto, M. et al. (1987) Development of new continuous Si-Ti-C-O fibre with high mechanical strength and heat-resistance, in High Tech. Ceramics (ed. P. Vincenzini), Elsevier, Amsterdam, pp. 737–46.Google Scholar
  3. 3.
    Yamamura, T., Ishikawa T., Shibuya M. et al. (1988) Development of a new continuous Si-Ti-C-O fibre using an organometallic polymer precursor. Jounal of Materials Science, 23 (7), 2589–94.CrossRefGoogle Scholar
  4. 4.
    Nagasawa, T. (1989) Development and application of ‘Tyranno’ fibres. Kagaku Keizai, 4, 48–53.Google Scholar
  5. 5.
    Melnikov, G. V. (1985) Development and adoption of industrial production of new products and materials by chemical firms of Japan, in Chemical Industry Abroad, No. 9, NIITECHIM, Moscow, pp. 45–88.Google Scholar
  6. 6.
    Textron Specialty Materials-Ube (1987) Silicon carbide composite materials. Technical information.Google Scholar
  7. 7.
    Fedorovskaya, T. C. (1988) Advanced types of inorganic reinforcing fibres, in Chemical Industry Abroad, No. 9, NIITECHIM, Moscow, pp. 38–56.Google Scholar
  8. 8.
    Wills, R. R., Markle, R. A. and Makherjee, Sh. P. (1983) Siloxanes, silanes and silazanes in the preparation of ceramics and glasses. Ceramics Bulletin, 62(8), 904–11, 915.Google Scholar
  9. 9.
    Kadziwara, N. (1984) Synthesis of inorganic polymers as ceramic precursors. Kobunsi Kako, 33(11), 28–32.Google Scholar
  10. 10.
    Lipowitz, J., Freeman, H. A., Goldberg, H. A. et al. (1986) Structure and properties of ceramic fibres prepared from polymeric precursors, in Better Ceramics through Chemistry, II (eds C. J. Brinker, D. E. Clark and D. R. Ulrich), Metals Research Society, Pittsburgh, pp. 489–94.Google Scholar
  11. 11.
    Les premieres fibres céramiques Rhône-Poulenc an salon de l’aeronautique. Industrial Ceramics, 6, 418–19 (1989).Google Scholar
  12. 12.
    Ko, F. K. (1989) Preform fibre architecture for ceramic-matrix composites. Ceramics Bulletin, 68 (2), 401–14.Google Scholar
  13. 13.
    Fitzer, E. (1989) Ceramic and coated carbon fibres for high temperature ceramics, in Proceedings of the Institute of Chemistry Technical University, Karlsruhe, pp. 9–52.Google Scholar
  14. 14.
    Budnitskii, G. A. (1989) Reinforcing fibres for composite materials. Zhurnal Vses. Chimicheskogo Obshestva imeni D. I. Mendeleev, 34, 438–46.Google Scholar
  15. 15.
    Tsirlin, A. M. (1992) Inorganic Continuous Fibres for Composite Materials, Metallurgiya, Moscow.Google Scholar
  16. 16.
    Budnitskii, G. A. (1990) Reinforcing fibres for composite materials. Chimicheskie Volokna, 2, 5–13.Google Scholar
  17. 17.
    Tsirlin, A. M., Varshavskii V. Ya., Egorushkina Z. F. and Budnitskii G. A. (1992) Coreless silicon carbide fibres from ceramic polymer precursors. Chimicheskie Volokna, in press.Google Scholar
  18. 18.
    Nippon Carbon Co., Ltd. (1987) Nicalon-silicon carbide continuous fibre, woven fabric, fibre reinforced composites. Technical information.Google Scholar
  19. 19.
    Ube Industries, Ltd. (1987) Tyranno fibre, FRM, surface treatment. Technical information.Google Scholar
  20. 20.
    Sawyer, L. C, Chen, R. T., Haimbach, F. et al. (1986) Thermal stability characterization of SiC ceramic fibres: II. Fractography and structure. Ceramic Engineering and Science Proceedings, 7 (7–8), 914–30.CrossRefGoogle Scholar
  21. 21.
    Day, R. J., Piddock, V., Taylor, R. et al. (1989) The distribution of graphitic microcrystals and the sensitivity of their Raman bands to strain in SiC fibres. Jounal of Materials Science, 24 (8), 2898–902.CrossRefGoogle Scholar
  22. 22.
    Bunsell, A. R., Simon, G., Abe, Y. and Akiyama, M. (1988) Ceramic fibres, in Fibre Reinforcements for Composite Materials, Vol. 2 (ed. A. R. Bunsell), Elsevier, Amsterdam, pp. 427–78.Google Scholar
  23. 23.
    Meir, B. and Grathwohl, G. (1990) Mikroanalytische Untersuchungen faserverstärker keramischer Werkstoffe. Materialwissenschaften and Werkstofftechnik, 21 (3), 128–34.CrossRefGoogle Scholar
  24. 24.
    Andersson, C.-N. and Warren, R. (1984) Silicon carbide fibres and their potential for use in composite materials. Part I. Composites, 15(1), 16–24.CrossRefGoogle Scholar
  25. 25.
    Hasegawa, Y., Iimura, M. and Yajima, S. (1980) Synthesis of continuous silicon carbide fibre. Part 2: conversion of polycarbosilane fibre into silicon fibres. Journal of Materials Science, 15(2), 720–8.CrossRefGoogle Scholar
  26. 26.
    Jaskowiak, M. H. and Di Carlo, J. A. (1986) Pressure effect on the thermal stability of SiC fibres, in Proceedings of 88th Annual Meeting of the American Ceramics Soc. Chicago, 27 April–1 May, 1986. Google Scholar
  27. 27.
    Dow Corning Corp. (USA) (1983) Nicalon silicon carbide fibres. New product information.Google Scholar
  28. 28.
    Kasai, Y.J. (1979) Composite Materials of Japan, 5 (2), 56–61.CrossRefGoogle Scholar
  29. 29.
    Warren, R. and Andersson, C.-H. (1984) Silicon carbide fibres and their potential for use in composite materials. Part II. Composites, 15 (2), 101–11.CrossRefGoogle Scholar
  30. 30.
    Plastics Industry News, 33 (4), 50 (1987).Google Scholar
  31. 31.
    Song, Y., Feng, C., Tan, Z. and Zu, Y. (1990) Structure and properties of polytitanocarbosilane as precursor of SiC-TiC fibre. Journal of Materials Science Letters, 9 (11), 1310–13.CrossRefGoogle Scholar
  32. 32.
    Lipowitz, J., Freeman, H. A., Chen, R. T. and Prack, E. R. (1987) Composition and structure of ceramic fibres prepared from polymer precursors. Advances in Ceramic Materials, 2 (2), 121–8.Google Scholar
  33. 33.
    Jaffe, M. and Sawyer, L. C. (1988) Strength-limiting features of polymer-derived ceramic fibres, in Ultrastructure Processing of Advanced Ceramics (eds J. D. Mackensie and D. R. Ulrich), Wiley, New York, pp. 725–37.Google Scholar
  34. 34.
    Sewyer, L. C., Jamieson, M., Brikowski, D. et al. (1987) Strength, structure and fracture properties of ceramic fibres produced from polymeric precursors: I. Base-line studies. Journal of the American Ceramics Society, 70 (11), 798–810.CrossRefGoogle Scholar
  35. 35.
    Okamura, K. (1987) Ceramic fibres from polymer precursors. Composites, 18 (2), 107–20.CrossRefGoogle Scholar
  36. 36.
    Porte, L. and Sartre, A. (1989) Evidence for a silicon oxycarbide phase in the Nicalon silicon carbide fibre. Journal of Materials Science, 24 (1), 271–5.CrossRefGoogle Scholar
  37. 37.
    Laffon, C, Flank, A. M., Lagarde, P. et al. (1989) Study of Nicalon-based ceramic fibres and powders by EXAFS spectrometry, X-ray diffractometry and some additional methods. Journal of Materials Science, 24 (4), 1503–12.CrossRefGoogle Scholar
  38. 38.
    Sawyer, L. C., Arons, R., Haimbach, F. et al. (1985) Characterization of Nicalon: strength, structure and fractography. Ceramics Engineering and Science Proceedings, 6 (7), 567–75.CrossRefGoogle Scholar
  39. 39.
    Maniette, Y. and Oberlin, A. (1989) TEM characterization of some crude or air heat-treated SiC Nicalon fibres. Journal of Materials Science, 24 (9), 3361–70.CrossRefGoogle Scholar
  40. 40.
    Hasegawa, Y. (1989) Synthesis of continuous silicon carbide fibre. Part 6: pyrolysis process of cured polycarbosilane fibre and structure of SiC fibre. Journal of Materials Science, 24 (3), 1177–90.CrossRefGoogle Scholar
  41. 41.
    Yajima, S., Okamura, K., Matsuzawa, T. et al. (1979) Anomalous characteristics of microcrystalline state of SiC fibre. Nature, 279, 706–9.CrossRefGoogle Scholar
  42. 42.
    Yajima, S., Iwai, T., Yamamura, T. et al. (1981) Synthesis of a polytitanocar-bosilane and its conversion into inorganic compounds. Journal of Materials Science, 16 (4), 1349–55.CrossRefGoogle Scholar
  43. 43.
    Clark, T. J., Jaffe, M., Rabe, J. and Langley, N. R. (1986) Thermal stability characterization of SiC ceramic fibres: I, mechanical property and chemical structure effects. Ceramic Engineering and Science Proceedings, 7 (7–8), 901–13.CrossRefGoogle Scholar
  44. 44a.
    Schlichting, J. (1979) Siliciumkarbid als oxidations beständiger Hoch-temperaturwerkstoff Oxidations- und Heisskorrosionsverhalten I und II. Ber. Deutsche Keram. Gesell., 56 (1), 196–200,Google Scholar
  45. 44b.
    Schlichting, J. (1979) Siliciumkarbid als oxidations beständiger Hoch-temperaturwerkstoff Oxidations- und Heisskorrosionsverhalten I und II. Ber. Deutsche Keram. Gesell.,56 , 256–61 Google Scholar
  46. 45.
    Korneev, N. N., Tsirlin, A. M., Rabinovich, R. A. et al. (1991) Thermal stability of polycarbosilane fibre, in Proceedings of Moscow International Conference on Composites (MICC-90). Elsevier, Amsterdam, pp. 212–14.Google Scholar
  47. 46.
    Fareed, A. S., Fang, P., Koczak, M. J. and Ko, F. M. (1987) Thermomechanical properties of SiC yarn. Ceramics Bulletin, 66 (2), 353–8.Google Scholar
  48. 47.
    Sasaki, Y., Nishina, Y., Sato, M. and Okamura, K. (1987) Raman study of SiC fibres made from polycarbosilane. Journal of Materials Science, 22 (1), 443–8.CrossRefGoogle Scholar
  49. 48.
    Okamura, K., Sato, M., Ishikawa, T. and Yamamura, T. (1988) Preparation and characterization of ceramic powders from organometallic polymers, in Sintering ′87, Tokyo, pp. 61–6.CrossRefGoogle Scholar
  50. 49.
    Hasegawa, J. (1990) Factors affecting the thermal stability of continuous SiC fibres. Composites Science and Technology, 37 (1), 37–54.CrossRefGoogle Scholar
  51. 50.
    Lain, R. M., Kennish, R. A., Cronin, T. R. and Balovoine, G. G. A. (1988) New catalytic routes to preceramic polymers: ceramic precursors to silicon nitride and silicon carbide nitride. Materials Research Society Proceedings, 121, 489–96.CrossRefGoogle Scholar
  52. 51.
    Barinov, S. M. and Shevchenko, V. Ya. (1990) New ceramics – state and prospects of developments. Zhurnal Vses. Chimicheskogo Obshestva imeni D. I. Mendeleev, 35 (6), 708–16.Google Scholar
  53. 52.
    Simon, G. and Bunsell, A. R. (1984) Mechanical and structural characterization of the Nicalon silicon carbide fibre. Journal of Materials Science, 19 (10), 3649–57.CrossRefGoogle Scholar
  54. 53.
    Avco Specialty Materials Division-Textron (1986) Boron, silicon carbide and alumina fibre composite materials. Technical Information.Google Scholar
  55. 54.
    Du Pont, Fibre ‘FP’ reinforced composites. Technical Information.Google Scholar
  56. 55.
    Gerald, V. (1988) Fatigueness of continuous fibre-reinforced metal matrix composites, in Mechanical and Physical Behaviour of Metallic and Ceramic Composites. Risø National Laboratory, Roskilde, Denmark, pp. 35–50.Google Scholar
  57. 56.
    Hayami, R. (1988) Inorganic fibre materials. Journal of the Society of Fibre Science and Technology, 44 (7), 232–6.Google Scholar
  58. 57.
    Dhingra, A. K. and Lauterbach, H. G. (1986) Fibre engineering, in Encyclopedia of Polymer Science and Engineering, Vol. 6, 2nd edn, Wiley, New York, pp. 756–802.Google Scholar
  59. 58.
    Martineau, R., Lahaye, M., Pailler, R. et al (1984) SiC filament/titanium matrix composites regarded as a model composite. Part 1. Filament microanalysis and strength characterization. Journal of Materials Science, 19 (8), 2731–48.CrossRefGoogle Scholar
  60. 59.
    Champion, A. R., Kruger, W. N., Hartman, H. S. and Dhingra, A. K. (1978) Fibre FP reinforced metal matrix composites, in Proceedings of 2nd International Conference on Composite Materials, Metals Society of the ASME, Toronto, pp. 883–905.Google Scholar
  61. 60.
    Mc Henry, K. D. and Tressler, R. E. (1975) Elevated temperature strength of silicon carbide-on-carbon filaments. Journal of Composite Materials, 9 (1), 73–6.CrossRefGoogle Scholar
  62. 61.
    Prilutskii, E.V., Gridneva, N. V., Milman, Yu. V. et al. (1979) Mechanical properties of silicon carbide fibres. PHYSCHOM, 5, 125–8.Google Scholar
  63. 62a.
    Fukunaga, H. and Goda, K. (1985) The tensile characteristics of coreless silicon carbide fibre exposed to some environments. SAMPE J., 10–12, 27–31Google Scholar
  64. 62b.
    Fukunaga, H. and Goda, K. (1985) The tensile characteristics of coreless silicon carbide fibre exposed to some environments. SAMPE J., 10–12, 380.Google Scholar
  65. 63.
    Goda, K. and Fukunaga, H. (1986) The evaluation of the strength distribution of silicon carbide and alumina fibres by a multimodal Weibull distribution. Journal of Materials Science, 21 (12), 4475–80.CrossRefGoogle Scholar
  66. 64.
    Phani, K. K. (1988) A new modified Weibull distribution function for the evaluation of the strength of silicon carbide and alumina fibre. Journal of Materials Science, 23 (7), 2424–8.CrossRefGoogle Scholar
  67. 65.
    Kumar, S. and Helminiak, T. E. (1990) Compression strength of high performance fibres. SAMPE J., 26 (2), 86–92.Google Scholar
  68. 66.
    Kohara, S. (1981) Compatibility of SiC fibres with aluminium, in Composite Materials: Mechanics, Mechanical Properties and Fabrication (eds K. Kawata and T. Akasaka), Japanese Society for Composite Materials, Tokyo, pp. 224–31.Google Scholar
  69. 67.
    Okamura, K., Matsuzawa, T., Sato, M. et al. (1986) Mechanical properties of neutron irradiated SiC fibres. Journal of Nuclear Materials, 141–143, 102–7.CrossRefGoogle Scholar
  70. 68.
    Okamura, K., Matsuzawa, T., Sato, M. et al. (1985) Effects of neutron irradiation on SiC fibre. Journal of Nuclear Materials, 133–134, 705–8.CrossRefGoogle Scholar
  71. 69.
    Yajima, S., Kayano, H., Okamura, K. et al. (1976) Elevated temperature strength of continuous SiC fibres. American Ceramics Society Bulletin, 55, 1065–72.Google Scholar
  72. 70.
    Jaffe, M., Sawyer, L. C. and Langley, N. (1986) High strength Si-C-N ceramic fibres, in Proceedings of the Joint NASA/DOD Conference on Composites and Advanced Ceramic Materials, Cocoa Beach, Florida, 1985, NASA Publication 2445, pp. 85–92.Google Scholar
  73. 71.
    Simon, G. and Bunsell, A. R. (1983) The creep of silicon carbide fibres. Journal of Materials Science Letters, 2 (2), 80–2.CrossRefGoogle Scholar
  74. 72.
    Simon, G. and Bunsell, A. R. (1984) Creep behaviour and structural characterization at high temperature of Nicalon SiC fibres. Journal of Materials Science, 19 (10), 3658–70.CrossRefGoogle Scholar
  75. 73.
    Bunsell, A. R (1988) Fibres for metallic and ceramic composites, the scientific aspects and their relation to composite performances, in Mechanical and Physical Behaviour of Metallic and Ceramic Composites (eds S. I. Andersen, H. Litholt and O. B. Pedersen), Risø National Laboratory, Roskilde, Denmark, pp. 1–12.Google Scholar
  76. 74.
    Bunsell, A. R. and Simon, G. (1986) Mechanical and structural characterization of Nicalon SiC fibres up to 1300°C. Composites Science and Technology, 27 (2), 157–71.CrossRefGoogle Scholar
  77. 75.
    Brennan, J. J. and Prewo, K. M. (1982) Silicon carbide fibre reinforced glass-ceramic matrix composites exhibiting high strength and toughness. Journal of Materials Science, 17 (4), 2371–83.CrossRefGoogle Scholar
  78. 76.
    Di Carlo, J. A. (1985) Fibres for structurally reliable metal and ceramic composites. Journal of Metals, 6 (6), 44–9.Google Scholar
  79. 77.
    Di Carlo, J. (1986) Creep of chemically vapour deposited SiC fibres. Journal of Materials Science, 21 (1), 217–24.CrossRefGoogle Scholar
  80. 78.
    Grathwohl, G. and Thummler, F. (1978) Creep of reaction bonded silicon nitride. Journal of Materials Science, 13 (3), 1177–86.CrossRefGoogle Scholar
  81. 79.
    Yajima, S., Okamura, K., Natsuzawa, T. et al. (1981) Continuous SiC fibre reinforced aluminium, in Composite Materials: Mechanics, Mechanical Properties and Fabrication (eds K. Kawata and T. Akasaka), Japanese Society for Composite Materials, Tokyo, pp. 232–8.Google Scholar
  82. 80.
    Kirchner, H. P. and Gruver, R. M. (1974) Fracture mirror in polycrystalline ceramics and glass, in Fracture Mechanics of Ceramics, Vol. 1 (eds R. C. Bradt, D. P. H. Hasselman and F. F. Lange) Plenum Press, New York, pp. 309–21.Google Scholar
  83. 81.
    Mecholsky, J. J., Rice, R. W. and Freiman, S. W. (1974) Prediction of fracture energy and flaw size in glasses from measurements of mirror size. Journal of the American Ceramics Society, 57 (10), 400–8.CrossRefGoogle Scholar
  84. 82.
    Mecholsky, J. J. and Rice, R. W. (1984) Fractographic analysis of biaxial failure in ceramics, in Fractography of Ceramic and Metal Failures (eds J. J. Mecholsky and S. R. Powell), ASTM STP 827, Philadelphia, pp. 185–93.CrossRefGoogle Scholar
  85. 83.
    Clark, T. J., Arons, R. M., Stamatoff, J. B. and Rabe, J. (1985) Thermal degradation of Nicalon SiC fibres. Ceramic Engineering and Science Proceedings, 6 (7–8), 576–89.CrossRefGoogle Scholar
  86. 84.
    Mah, T., Hecht, N. L., McCullum, D. E. et al. (1984) Thermal stability of SiC fibres (Nicalon). Journal of Materials Science, 19 (2), 1191–1201.CrossRefGoogle Scholar
  87. 85.
    Beamont, P. W. R. (1989) Damage and fracture of fibre composites, in Design with Advanced Composite Materials (ed. L. N. Phillips), Springer-Verlag, London, pp. 303–37.Google Scholar
  88. 86.
    Okamura, K., Sato, M., Matsuzawa, T. and Hasegawa, Y. (1988) Formation of SiC fibres and related ceramic fibres from polycarbosilane, in Ultrastructure Processing of Advanced Ceramics (eds J. D. Mackenzie and D. R. Ulrich), Wiley, New York, pp. 501–18.Google Scholar
  89. 87.
    Tsirlin, A. M., Popova, N. A. and Florina, E. K. (1990) Polytitanocar-bosilanes — initial polymers for modified silicon carbide compositions, in 7th All-Union Conference on Chemistry, Technology of Production and Practical Application of Organosilicon Compounds, 20–23 November 1990, Tbilisi: Summaries of Reports, Moscow, p. 211.Google Scholar
  90. 88.
    Bouillon, E., Pailler, R., Naslaine, R. et al. (1991) New poly(carbosilane) models. 5. Pyrolysis of a series of functional poly(carbosilanes). Chemistry of Materials, 3 (2), 356–67.CrossRefGoogle Scholar
  91. 89.
    Fischbach, D. B. and Lemoine, P. M. (1990) Influence of a CVD carbon coating on the mechanical property stability of Nicalon SiC fibre. Composites Science and Technology, 37 (1–3), 55–61.CrossRefGoogle Scholar
  92. 90.
    Sheppard, L. M. (1990) Progress in composites processing. Ceramics Bulletin, 69 (4), 666–73.Google Scholar
  93. 91.
    Cranmer, D. C. (1989) Fibre coating and characterization. Ceramics Bulletin, 68 (2), 415–19.Google Scholar
  94. 92.
    Chantrell, P. G. and Popper, P. (1965) Inorganic polymers and ceramics, in Special Ceramics (ed. P. Popper), Academic Press, New York, pp. 87–103.Google Scholar
  95. 93.
    Kuzmin, O. V., Gorislavskaya, Zh. V., Chernyshev, E. A. et al. (1982) Silicon compounds for obtaining silicon carbide materials, in Hetero-Organic Compounds and Their Application, Moscow, NIITECHIM.Google Scholar
  96. 94.
    Fritz, G., Grobe, J. and Kummer, D. (1965) Carbosilanes, in Advances in Inorganic Chemistry and Radiochemistry, 7 (2), 349–418.CrossRefGoogle Scholar
  97. 95.
    Fritz, G. and Matern, E. (1986) Carbosilanes, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  98. 96.
    Tsirlin, A. M. and Popova, N. A. (1990) Ceramic precursor organosilicon polymers — polycarbosilanes, in Problems of Chemical Science and Technology and Protection of the Environment. Elemento-Organic Compounds, Moscow, NIITECHIM.Google Scholar
  99. 97.
    Wynne, K. J. and Rice, R. W. (1984) Ceramics via polymer pyrolysis. Annual Reviews of Materials Science, 14, 297–334.CrossRefGoogle Scholar
  100. 98.
    Rice, R. W. (1983) Ceramics from polymer pyrolysis, opportunities and needs. A materials perspective. Ceramics Bulletin, 62 (8), 889–92.Google Scholar
  101. 99.
    Zeldin, M., Wynne, K. J. and Alloch, H. R. (eds) (1988) Inorganic and Organometallic Polymers, American Chemical Society, Washington, DC.Google Scholar
  102. 100.
    Hench, L. L. and Ulrich, D. R. (eds) (1984) Ultrastructure Processing of Ceramics, Glasses and Composites, Wiley, New York.Google Scholar
  103. 101.
    Mackenzie, D. D. and Ulrich, D. R. (eds) (1988) Ultrastructure Processing of Glass, Ceramics and Composites, III, Wiley, New York.Google Scholar
  104. 102.
    Brinker, C. J., Clark, D. E. and Ulrich, D. R. (eds) (1986) Better Ceramics through Chemistry, II, Materials Research Society, Pittsburgh.Google Scholar
  105. 103.
    Brinker, C. J., Clark, D. E. and Ulrich, D. R. (eds) (1988) Better Ceramics through Chemistry, III, Materials Research Society, Pittsburgh.Google Scholar
  106. 104.
    Sato, M., Hasegawa, Y. and Okamura, K. (1987) Preparation of silicon oxynitride fibre and its mechanical properties. Yogyo Kyokaishi, 95 (2), 256–61.CrossRefGoogle Scholar
  107. 105.
    Gerlivanov, V. G., Tsirlin, A.M., Florina, E.K. and Popova, N.A. (1991) Poly-carbosilane use for Increasing of Constructional Materials, Thermal and Oxidative Stability, in Proceedings of 6th International Conference on Mechanical Behaviour of Materials (ICM-6), Pergamon Press, Oxford, pp. 56–64.Google Scholar
  108. 106.
    Tsirlin, A. M., Popova, N. A., Florina, E. K. and Lavruhin, V. D. (1991) Polytitanocarbosilanes — polymer precursors for coreless silicon carbide Tyranno-like fibres and other ceramic materials, in Proceedings of Moscow International Conference on Composites (MICC-90), Elsevier, Amsterdam, pp. 815–19.Google Scholar
  109. 107a.
    Jajima, S. (1983) Special heat-resisting materials from organometallic polymers. Ceramics Bulletin, 62 (8), 893–8Google Scholar
  110. 107b.
    Jajima, S. (1983) Special heat-resisting materials from organometallic polymers. Ceramics Bulletin, 62 (8), 903Google Scholar
  111. 107c.
    Jajima, S. (1983) Special heat-resisting materials from organometallic polymers. Ceramics Bulletin, 62 (8), 915.Google Scholar
  112. 108.
    Seyferth, D. (1988) Polycarbosilanes: an overview, in Inorganic and Organometallic Polymers (eds M. Zeldin, K. J. Wynne and H. R. Allcock), American Chemical Society, Washington, DC, pp. 21–42.CrossRefGoogle Scholar
  113. 109.
    Hasegawa, Y. and Okamura, K. (1986) Synthesis of continuous silicon carbide fibre. Part 4: the structure of polycarbosilane as the precursor. Journal of Materials Science, 21 (1), 321–8.CrossRefGoogle Scholar
  114. 110.
    Tsirlin, A. M., Florina, E. K., Khodov, G. Ya. et al. (1991) Obtaining ultradis-persed powders of silicon carbide and composite carbides based on it via modified polycarbosilanes, in Methods of Obtaining, Properties and Fields of Application of High-Melting Carbides and Alloys Based on Them (ed. T. Ya. Kosolapova), Naukova Dumka, Kiev.Google Scholar
  115. 111.
    Ger. Offen. 2 236 078 (1974).Google Scholar
  116. 112.
    Yajima, S., Hasegawa, Y., Hayashy, J. and Iimura, M. (1978) Synthesis of continuous silicon carbide fibre with high tensile strength and high Young’s modulus. Part 1: synthesis of polycarbosilanes as precursors. Journal of Materials Science, 13 (7), 2569–76.CrossRefGoogle Scholar
  117. 113.
    Tsirlin, A. M., Popova, N. A., Florina, E. K. et al. (1989) Intermediate products and their interaction mechanism in the process of obtaining polycarbosilanes as ceramic precursors, in Structure and Reactivity of Organosilicon Compounds: 4th All-Union Conference, 16–20 October 1989, Irkutsk. Summaries of Reports, Irkutsk, p. 160.Google Scholar
  118. 114.
    Popova, N. A., Turkeltaub, G. N., Khromushkina, L. P. and Tsirlin, A. M. (1990) Study of low-temperature products of polydimethylsilane pyrolysis by gas liquid chromatography and NMR, in 7th All-Union Conference on Chemistry, Production Technology and Practical Application of Organosilicon Compounds, 20–23 November 1990, Tbilisi. Summaries of Reports, Moscow, p. 297.Google Scholar
  119. 115.
    Popova N. A., Lavruhin B. D., Zagorevskii D. V. et al. (1991) Low-molecular-weight products of polydimethylsilane pyrolysis. Metallo-organicheskaja Chimija, 4 (5), 984–91.Google Scholar
  120. 116.
    US Patent 4 052 430 (1978).Google Scholar
  121. 117.
    US Patent 4 100 233 (1978).Google Scholar
  122. 118.
    Yajima, S., Omori, M., Hayashi, J. et al. (1976) Simple synthesis of continuous SiC fibre with high tensile strength. Chemistry Letters, 551–4.Google Scholar
  123. 119.
    Komalenkova, N. G., Bashkirova, S. A., Shamshin, L. N. and Chernyshev, E. A. (1979) Synthesis of silicon-containing heterocyclic compounds through unstable derivatives of divalent silicon and carbon, in High-Temperature Gas-Phase Methods of Synthesis of Organosilicon Monomers, NIITECHIM, GNIICHTEOS, Moscow, pp. 59–82.Google Scholar
  124. 120.
    Popova, N. A., Tsirlin, A. M., Knyazev, S. P. et al. (1991) Synthesis of polycarbosilanes in the presence of carbonyl complexes of transition metals. Metalloorganicheskaja Chimija, 4 (6), 1241–7.Google Scholar
  125. 121.
    Tsirlin, A. M., Florina, E. N., Simonova, O. A. et al. (1992) Basic features of the synthesis of fibre-forming polycarbosilanes. Chimicheskie Volokna, in press.Google Scholar
  126. 122.
    US Patent 4 152 509 (1979).Google Scholar
  127. 123.
    US Patent 4 220 600 (1979).Google Scholar
  128. 124.
    US Patent 4 377 677 (1982).Google Scholar
  129. 125.
    Ishikawa, T., Shibuya, M. and Yamamura, T. (1990) The conversion process from polydimethylsilane to polycarbosilane in the presence of poly-borodiphenylsiloxane. Journal of Materials Science, 25 (6), 2809–14.CrossRefGoogle Scholar
  130. 126.
    Popova, N. A., Tsirlin, A. M., Pronin, Yu. E. et al. (1990) Polyboron-, poly-titanosiloxanes and their new fields of application, in 7th All-Union Conference on the Chemistry, Production Technology and Practical Application of Organosilicon Compounds, 20–23 November 1990, Tbilisi. Summaries of Reports, p. 202.Google Scholar
  131. 127.
    West, R., David, L. D., Djurovich, P. S. et al. (1983) Polysilastyrene:phenyl-methylsilane — dimethylsilane copolymers as precursors to silicon carbide. Ceramics Bulletin, 62 (8), 899–903.Google Scholar
  132. 128.
    West, R. (1984) Polysilane precursors to silicon carbide, in Ultrastructure Processing in Ceramics, Glasses and Composites (eds L. L. Hench and D. R. Ulrich), Wiley, New York, pp. 235–44.Google Scholar
  133. 129.
    West, R. (1984) Polysilane high polymers as precursors to silicon carbide. American Chemical Society Polymer Preprints, 25 (1), 4–5.Google Scholar
  134. 130.
    Japan Patent 63-302 332 (1990).Google Scholar
  135. 131.
    Schilling, C. L., Wesson, J. P. and Williams, T. C. (1983) Polycarbosilane precursors for silicon carbide. Ceramics Bulletin, 62 (8), 912–16.Google Scholar
  136. 132.
    Schilling, C. L., Wesson, J. P. and Williams, T. C. (1983) Polycarbosilane precursors for silicon carbide. Journal of Polymer Science: Polymer Symposium, 70, 121–8.CrossRefGoogle Scholar
  137. 133.
    Schilling, C. L. and Williams, T. C. (1984) Polymeric routes to silicon carbide: polycarbosilanes, polysilahydrocarbones and vinyl polysilanes. American Chemical Society Polymer Preprints, 25 (1), 1–2.Google Scholar
  138. 134.
    Carlsson, D. J., Cooney, J. D., Gauthier, S. and Worsfold, D. J. (1990) Pyrolysis of silicon-backbone polymers to silicon carbide. Journal of the American Ceramics Society, 73 (2), 237–41.CrossRefGoogle Scholar
  139. 135.
    US Patent 4 310 651 (1982).Google Scholar
  140. 136.
    Baney, R. H. (1984) Some organometallic routes to ceramics, in Ultrastructure Processing of Ceramics, Glasses and Composites (eds L. L. Hench and D. R. Ulrich), Wiley, New York, pp. 235–44.Google Scholar
  141. 137.
    Sjadi-Maghsoodi, S., Pang, Yi and Barton, T. J. (1990) Efficient ‘one-pot’ synthesis of silylene-acetylene and disilylene-acetylene preceramic polymers from trichloroethylene. Journal of Polymer Science A: Polymer Chemistry, 28, 955–65.CrossRefGoogle Scholar
  142. 138.
    Becque, E., Pillot, J. P., Birot, M. et al. (1988) New model polycarbosilanes. 3. Syntheses and characterization of linear functional carbosilanes. Journal of Organometallic Chemistry, 346 (2), 147–60.CrossRefGoogle Scholar
  143. 139.
    Bordeau, M., Biran, C., Pons, P. et al. (1990) Electrosynthesis, an alternative for the synthesis of polycarbosilanes. Journal of Organometallic Chemistry, 382 (3), C21–C24.CrossRefGoogle Scholar
  144. 140.
    Hasegawa, Y. and Okamura, K. (1983) Synthesis of continuous silicon carbide fibre. Part 3: pyrolysis process of polycarbosilane and structure of products. Journal of Materials Science, 18 (10), 3633–48.CrossRefGoogle Scholar
  145. 141.
    Yamamura, T. (1984) Development of high tensile strength Si−Ti−C fibre using an organometallic polymer precursor. American Chemical Society Polymer Preprints, 25 (1), 8–9.Google Scholar
  146. 142.
    Okamura K., Sato, M. and Hasegawa, Y. (1985) Si−N−O fibre and Si−Ti−C fibre obtained from polycarbosilane, in Proceedings of 5th International Conference on Composite Materials, pp. 535–42.Google Scholar
  147. 143.
    Tsirlin, A. M., Popova, N. A., Florina, E. K. and Minsker, E. I. (1989) Synthesis and structure of polymetallocarbosilanes, in Structure and Reactivity of Organosilicon Compounds: 4th All-Union Conference, 16–20 October 1989, Irkutsk. Summaries of Reports, Irkutsk, p. 152.Google Scholar
  148. 144.
    Tsirlin, A. M., Sytova, I. M., Rabinovich, R. A. and Florina, E. K. (1989) Poly-carbosilanes-polymer precursors for new high-strength structural materials, in 14th Mendeleev Congress on General and Applied Chemistry. Abstracts of Reports and Information, Vol. 2, p. 158.Google Scholar
  149. 145.
    US Patent 4 342 712 (1983).Google Scholar
  150. 146.
    US Patent 4 399 232 (1983).Google Scholar
  151. 147.
    US Patent 4 347 347 (1982).Google Scholar
  152. 148.
    Yajima, S., Liaw, C., Omori, M. and Hayashi, J. (1976) Molecular weight distribution of polycarbosilane as a starting material of the silicon carbide fibre with high tensile strength. Chemistry Letters, 435–6.Google Scholar
  153. 149.
    Legrow, G. E., Lim, T. F., Lipowitz, J. and Reaoch, R. S. (1987) Ceramics from hydridopolysilazane. Ceramics Bulletin, 66 (2), 363–7.Google Scholar
  154. 150.
    UK Patent Application 2 076 417 (1981).Google Scholar
  155. 151.
    US Patent 3 853 567 (1974).Google Scholar
  156. 152.
    US Patent 3 892 583 (1975).Google Scholar
  157. 153.
    Penn, B. G., Ledbetter, F. E., Clemons, J. M. and Deniels, J. G. (1982) Preparation of silicon carbide-silicon nitride fibres by the controlled pyrolysis of polycarbosilazane precursors. Journal of Applied Polymer Science, 27, 3751–61.CrossRefGoogle Scholar
  158. 154.
    Penn, B. G., Deniels, J. G., Ledbetter, F. E. and Clemons, J. M. (1986) Preparation of silicon carbide-silicon nitride fibres by the pyrolysis of polycarbosilazane precursors: a review. Polymer Engineering and Science, 26 (17), 1191–4.CrossRefGoogle Scholar
  159. 155.
    Legrow, G. E., Lim, T. F., Lipowitz, J. and Reaoch, R. S. (1986) Ceramics from hydridopolysilane, in Better Ceramics through Chemistry, II (eds C. J. Brinker, D. E. Clark and D. E. Ulrich), Materials Research Society, Pittsburgh, pp. 553–8.Google Scholar
  160. 156.
    US Patent 4 340 619 (1982).Google Scholar
  161. 157.
    US Patent 4 312 970 (1982).Google Scholar
  162. 158.
    US Patent 4 535 007 (1985).Google Scholar
  163. 159.
    US Patent 4 543 344 (1985).Google Scholar
  164. 160.
    Legrow, G. E., Lim, T. F., Lipowitz, J. and Reaoch, R. S. (1986) Ceramic fibres from hydridopolysilazane. Journal of Chemistry, Physics and Physico-Chemical Biology, 83 (11–12), 869–73.Google Scholar
  165. 161.
    Mazaev, V. A., Tsapuk, A. K. and Efimova, A. A. (1985) Thermal decomposition of polymethyldimethylsilazane. Neorgan. Mater., 21 (9), 1504–7.Google Scholar
  166. 162.
    Seyferth, D. (1984) Silazane precursors to silicon nitride, in Ultrastructure Processing of Ceramics, Glasses and Composites (eds L. L. Hench and D. R. Ulrich), Wiley, New York, pp. 265–71.Google Scholar
  167. 163.
    Seyferth, D., Wiseman, G. H., Poutasse, Ch. A. et al. (1987) Organosilicon polymers as precursors for silicon-containing ceramics: recent developments. Polymer Preprints, 28 (1), 389–92.Google Scholar
  168. 164.
    Seyferth, D. and Wiseman, G. H. (1984) High-yield synthesis of Si3N4/SiC ceramic materials by pyrolysis of a novel polyorganosilazane. Communications of the American Ceramics Society, 7, C-132-C-133.Google Scholar
  169. 165.
    Blum, Y. D., Schwartz, K. B., Crawford, E. J. and Hamlin, R. D. (1988) New structures of preceramic polysilazanes synthesized by transition metal catalysis, in Better Ceramics through Chemistry, Materials Research Society, Pittsburgh, pp. 565–70.Google Scholar
  170. 166.
    Blum, Y. D., Schwartz, K. B. and Laine, R. M. (1989) Preceramic polymer pyrolysis. Part 1. Pyrolytic properties of polysilazanes. Journal of Materials Science, 24 (4), 1707–18.CrossRefGoogle Scholar
  171. 167.
    Pankov S. P. (1977) Physico-Chemical Basis of the Production of Synthetic Fibres, Khimiya, Moscow.Google Scholar
  172. 168.
    Zyabitskii, A. (1979) Theoretical Basis of Fibre Formation, Khimiya, Moscow.Google Scholar
  173. 169.
    Pakshver, A. B. (1972) Physico-Chemical Basis of Chemical Fibre Technology, Khimiya, Moscow.Google Scholar
  174. 170.
    Perepelkin, K. E. (1985) Structure and Properties of Fibres, Khimiya, Moscow.Google Scholar
  175. 171.
    Perepelkin, K. E. (1978) Physico-Chemical Basis of Processes for Chemical Fibre Formation, Khimiya, Moscow.Google Scholar
  176. 172.
    Fishman, K. E. and Khruzin, N. A. (1967) Production of Capron Fibre, 2nd edn, Khimiya, Moscow.Google Scholar
  177. 173.
    US Patent 4 789 507 (1988).Google Scholar
  178. 174.
    Ichikawa, N., Machino, F., Mitsuno, S. et al. (1986) Synthesis of continuous silicon carbide fibre. Part 5: factors affecting stability of polycarbosilane to oxidation. Journal of Materials Science, 21 (12), 4352–8.CrossRefGoogle Scholar
  179. 175.
    Taki, T., Maeda, S., Okamura, K. et al. (1987) Oxidation curing mechanism of polycarbosilane fibres by solid-state 29Si high-resolution NMR. Journal of Materials Science Letters, 6, 826–8.CrossRefGoogle Scholar
  180. 176.
    Taki, T., Okamura, K. and Sato, M. (1989) A study of the oxidation curing mechanism of polycarbosilane fibre by solid-state high-resolution nuclear magnetic resonance. Journal of Materials Science, 24 (4), 1263–7.CrossRefGoogle Scholar
  181. 177.
    Seyferth, D., Sobon, C. and Borm, J. (1990) A new procedure for ‘upgrading’ the Nicalon polycarbosilane and related Si−H containing organosilicon polymers. New Journal of Chemistry, 14 (6–7), 545–7.Google Scholar
  182. 178.
    US Patent 4 828 663 (1989).Google Scholar
  183. 179.
    Taki, T., Inui, M., Okamura, K. and Sato, M. (1989) Conversion process of polycarbosilane to SiC by solid-state high-resolution NMR. Journal of Materials Science Letters, 8 (2), 918–20.CrossRefGoogle Scholar
  184. 180.
    Taki, T., Inui, M., Okamura, K. and Sato, M. (1980) A study of the nitridation process of polycarbosilane by solid-state high-resolution NMR. Journal of Materials Science Letters, 8 (3), 1119–21.Google Scholar
  185. 181.
    Monthioux, M., Oberlin, A. and Bouillon, F. (1990) Relationship between microtexture and electrical properties during heat-treatment of SiC fibre precursor. Composites Science and Technology, 37, 21–35.CrossRefGoogle Scholar
  186. 182.
    Van Rijswijk, W. and Shanefield, D. J. (1990) Effect of carbon as a sintering aid in silicon carbide. Journal of the American Ceramics Society, 73 (1), 148–9.CrossRefGoogle Scholar
  187. 183.
    Sirieix, F., Goursat, F., Lecomte, A. and Danger, A. (1990) Pyrolysis of polysilazanes: relationship between precursor architecture and ceramic microstructure. Composites Science and Technology, 37 (1), 7–19.CrossRefGoogle Scholar
  188. 184.
    Aslanova, M. S. (1985) Glass fibres, in Handbook of Composites, Vol. 1 (eds W. Watt and B. V. Perov), North-Holland, Amsterdam, pp. 3–60.Google Scholar
  189. 185.
    Konkin, A. A. (1985) Production of cellulose based carbon fibrous materials, in Handbook of Composites, Vol. 1 (eds W. Watt and B. V. Perov), North-Holland, Amsterdam, pp. 275–326.Google Scholar
  190. 186.
    Tsirlin, A. M., Florina, E. K., Popova, N. A. et al. (1990) Synthesis and investigation of thermochemical transformations of polycarbosilanes, in 7th All-Union Conference on Chemistry, Production Technology and Practical Application of Organosilicon Compounds, 20–23 November 1990, Tbilisi. Summaries of Reports, Tbilisi, p. 245.Google Scholar
  191. 187.
    Technical Committee, Japan Carbon Fibre Manufacturers Association (1982) Standardization of Testing Methods for Carbon Fibres.Google Scholar
  192. 188.
    Berghof-SJGMA Verbund-Werkstoffe (1986) Faser-Verbund-Werkstoffe mit Hochleistungsfasern ans Silicium Carbide Filaments. Technical information.Google Scholar
  193. 189.
    Favry, Y. and Bunsell, A. R. (1987) Characterization of Nicalon (SiC) reinforced aluminium wire as a function of temperature. Composites Science and Technology, 30 (2), 85–97.CrossRefGoogle Scholar
  194. 190.
    Portnoi, K. I., Salibekov, S. E., Svetlov, I. M. and Chubarov, V. M. (1979) Structure and Properties of Composite Materials, Machinostvoenie, Moscow.Google Scholar
  195. 191.
    Chubarov, V. M., Salibekov, S. E., Gribkov, A. N. et al. (1981) Operating characteristics of the boraluminium composite material BKA-1, in Composite Materials (ed. A. I. Manohin), Nauka, Moscow, pp. 106–11.Google Scholar
  196. 192.
    Fibrous Composite Materials, Metallurgiya, Moscow (1978).Google Scholar
  197. 193.
    Brautman, L. and Krok, R. (eds) (1978) Composite Materials, Mir/Machino-stroenie, Moscow.Google Scholar
  198. 194.
    Popov, B. V. (1989) Composite materials in aviation engineering. Zhurnal Vses. Chimicheskogo Obshestva imeni D. I. Mendeleev, 34 (5), 476–92.Google Scholar
  199. 195.
    Tanaka, J., Ichikawa, N., Hayashi, T. et al. (1982) Mechanical properties of SiC fibre reinforced Al composites, in Progress in Science and Engineering of Composites (SCCM-IV) (eds T. Hayashi, K. Kawata and S. Umekawa), Tokyo, pp. 1407–13.Google Scholar
  200. 196.
    Kohara, S. and Muto, N. (1982) Fabrication of SiC fibre-aluminium composite materials, in Progress in Science and Engineering of Composites (SCCM-IV) (eds T. Hayashi, K. Kawata and S. Umekawa), Tokyo, pp. 1451–5.Google Scholar
  201. 197.
    US Patent 4 147 538 (1979).Google Scholar
  202. 198.
    Prewo, K. M. (1989) Fibre-reinforced ceramics: new opportunities for composite materials. Ceramics Bulletin, 68 (2), 395–400.Google Scholar
  203. 199.
    Prewo, K. M. (1989) Silicon carbide fibre-reinforced glass-ceramic composite tensile behaviour at elevated temperature. Journal of Materials Science, 24 (4), 1373–9.CrossRefGoogle Scholar
  204. 200.
    Prewo, K. M., Brennen, J. J. and Layden, G. K. (1986) Fibre-reinforced glasses and glass-ceramic for high-performance application. Ceramics Bulletin, 65 (2), 305–13.Google Scholar
  205. 201.
    Dowson, D. M., Preston, R. F. and Purser, A. (1987) Fabrication and materials evaluation of high-performance aligned ceramic fibre reinforced glass matrix composite. Proceedings of the British Ceramics Society, 39, 221–8.Google Scholar
  206. 202.
    Ford, B., Cooke, R. G. and Newsam, S. (1987) Failure mechanisms in silicon carbide fibre reinforced borosilicate glass. Proceedings of the British Ceramics Society, 39, 229–34.Google Scholar
  207. 203.
    Hegeler, H. and Bruckner, R. (1989) Fibre reinforced glasses. Journal of Materials Science, 24 (3), 1191–4.CrossRefGoogle Scholar
  208. 204.
    Murty, V. S. R. and Lewis, M. H. (1989) Interface structure and matrix crystallization in SiC (Nicalon)-Pyrex composites. Journal of Materials Science Letters, 8 (4), 571–2.CrossRefGoogle Scholar
  209. 205.
    Caputo, A. J., Stinton, D. P., Lowden, R. A. and Besmann, T. M. (1987) Fibre-reinforced SiC composites with improved mechanical properties. Ceramics Bulletin, 66 (2), 368–72.Google Scholar
  210. 206.
    Hopkins, G. R. and Chin, J. (1986) SiC matrix/SiC fibre composite: a high-heat flux, low activation structural material. Journal of Nuclear Materials, Part A, 141–143, 148–51.CrossRefGoogle Scholar
  211. 207.
    Phillips, D. C. (1987) High temperature fibre composites, in Proceedings of 6th International Conference on Composite Materials Combined with 2nd European Conference on Composite Materials, Vol. 2, SAMPE, London/New York, pp. 2.1–2.32.Google Scholar
  212. 208.
    Fitzer, E. and Gadow, R. (1986) Fibre-reinforced silicon carbide. Ceramics Bulletin, 65 (2), 326–35.Google Scholar
  213. 209.
    Lamicq, P. J., Bernhart, G. A., Danchier, M. M. and Mace, J. G. (1986) SiC/SiC composite ceramics. Ceramics Bulletin, 65 (2), 336–8.Google Scholar
  214. 210.
    Moeller, H. H., Long, W. G., Caputo, A. J. and Lowden, R. A. (1987) Fibre-reinforced ceramic composites. Ceramics Engineering and Science Proceedings, 8 (7–8), 977–84.CrossRefGoogle Scholar
  215. 211.
    Materials and Processing Report, 2 (10), 4 (1988).Google Scholar
  216. 212.
    SEP (France) (1989) Cerasep. Technical description.Google Scholar
  217. 213.
    Advanced Composite Bulletin, 1 (7), 11–12 (1988).Google Scholar
  218. 214.
    Yamamura, T., Ishikawa, T., Shibuya, M. et al. (1989) A new type of ceramic matrix composite using Si−Ti−C−O fibre. Ceramics Engineering and Science Proceedings, 10 (7–8), 736–47.CrossRefGoogle Scholar
  219. 215.
    Jane’s Defence Weekly, (10), 51–2 (1984).Google Scholar
  220. 216.
    Rovner, L. H. and Hapkins, G. R. (1976) Nuclear Technology, 29, 274–8.Google Scholar
  221. 217.
    Muto, N., Miyayama, M., Yanagida, H. et al. (1990) Infrared detection by Si−Ti−C−O fibres. Journal of the American Ceramics Society, 73 (2), 443–5.CrossRefGoogle Scholar
  222. 218.
    Muto, N., Miyayama M., Yanagida, H. et al. (1990) Infrared detection by semiconducting fibre. Journal of Materials Science Letters, 9 (11), 1269–71.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • A. M. Tsirlin

There are no affiliations available

Personalised recommendations