Ceramic fibres

  • V. I. Kostikov
  • M. F. Makhova
  • V. P. Sergeev
  • V. I. Trefilov
Part of the Soviet Advanced Composites Technology Series book series (SACTS, volume 5)


Ceramic materials, the demand for which is steadily rising, are distinguished by a combination of valuable properties that are very important for manufacturing many products: high physical and mechanical characteristics, thermal stability, wear and corrosion resistance and low density compared with metals.


Boron Nitride Thermal Insulation Sound Absorption Interlayer Distance Continuous Fibre 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brautman, P. and Krok, R. (1970) Modern Composite Materials, Mir, Moscow.Google Scholar
  2. 2.
    Lockhart, R. (1965) Meeting of ASTM Committee D-30, Fibre Evaluation Symposium, Philadelphia, 20 October 1965.Google Scholar
  3. 3.
    Nazarenko, N. D., Nechitailo, V. F. and Vlasko, N. I. (1969) Production and properties of oxide-based fibres. Poroshkovaya Metalurgiya, 4, 10–13.Google Scholar
  4. 4.
    French Patents 1 358 140 and 1 364 238.Google Scholar
  5. 5.
    French Patent 1 520 209.Google Scholar
  6. 6.
    Kac, T. S. and Milevski, D. V. (1981) Fillers for Polymer Composite Materials, Khimiya, Moscow.Google Scholar
  7. 7.
    Konkin, A. A. (1974) Carbon and Other Heat-Resistant Fibrous Materials, Khimiya, Moscow.Google Scholar
  8. 8.
    Search for composites spurs growth in inorganic refractory fibres. Chemical Engineering News, 45, 28 (1967).Google Scholar
  9. 9.
    US Patent 1 509 452.Google Scholar
  10. 10.
    Ekohomy, J., Anderson, R. V. and Matcovich, V. I. (1969) Preparation of boron nitride fibres. Applied Polymer Symposia, 9, 377.Google Scholar
  11. 11.
    Thomas, J., Weston, N. E. and O’Connor, T. E. (1963) Turbostratic boron nitride, thermal transformation to ordered-layer-lattice boron nitride. Journal of the American Chemical Society, 84, 4619.CrossRefGoogle Scholar
  12. 12.
    US Patent 2 324 191.Google Scholar
  13. 13.
    Fredrickson, J. and Redanz, W. H. (1965) Boron nitride for aerospace applications. Metal Progress, 87 (2), 97–101.Google Scholar
  14. 14.
    Silver, A. N. and Bray, P. J. (1960) NMR study of bonding in some solid compounds. Journal of Chemical Physics, 32, 288.CrossRefGoogle Scholar
  15. 15.
    Pease, R. S. (1952) An X-ray study of boron nitride. Acta Crystallographica, 5, 356.CrossRefGoogle Scholar
  16. 16.
    Ekohomy, D. and Anderson, R. (1967) Properties and fields of application of boron nitride fibres. Chemistry and Technology of Polymers, 7, 79–94.Google Scholar
  17. 17.
    Mahova, M. F., Mischenko, E. S., Volynskii, A. K. and Dzhigiris, D. D. (1980) Rocks of the Ukrainian SSR — raw materials for fibre production, in Basalt-Fibre Composite Materials and Structures, Naukova Dumka, Kiev, pp. 3–36.Google Scholar
  18. 18.
    Classification and Range of Magnetic Rocks, Nedra, Moscow (1981), p. 48.Google Scholar
  19. 19.
    Mahova, M. F., Dzhigiris, D. D., Gorbachev, G. F. and Bachilo, T. M. (1980) Research into basic properties of rock melts, in Basalt-Fibre Composite Materials and Structures, Naukova Dumka, Kiev, pp. 37–54.Google Scholar
  20. 20.
    Mahova, M. F., Gorbachev, G. F., Odarich, N. G. and Kovalenko, V. G. (1981) Some features of rocks and their melts suitable for fibre manufacturing, in Construction Materials, Articles and Sanitary Engineering, NIISMI, Kiev, pp. 65–7.Google Scholar
  21. 21.
    Dzhigiris, D. D. (1979) Perspectives for developing production of basalt fibres and their fields of application. Konstruktsionnye Materialy, 10, 12–13.Google Scholar
  22. 22.
    Dzhigiris, D. D., Mahova, M. F. and Sergeev, V. P. (1989) Basalt-fibre materials. Polymer, Soft Roofing and Thermal-Insulation Construction Materials, Vol. 3, VNIIESM, Moscow.Google Scholar
  23. 23.
    Dzhigiris, D. D., Volynskii, A. K., Kozlovskii, P. P. et al. (1980) Fundamental technology of manufacturing basalt fibres and their properties, in Basalt-Fibre Composite Materials and Structures, Naukova Dumka, Kiev, pp. 54–81.Google Scholar
  24. 24.
    Ilchenko, A. I. and Mahova, M. F. (1987) Thermal- and sound-insulation materials from basalt fibre. Polymer, Soft Roofing and Thermal-Insulation Construction Materials, Vol. 5, VNIIESM, Moscow, pp. 4–8.Google Scholar
  25. 25.
    Kaganer, M. G. (1966) Thermal Insulation in Low-Temperature Engineering, Mashinostroenie, Moscow.Google Scholar
  26. 26.
    Device for production of fluff-cord. USSR Inventor’s Certificate 401 767.Google Scholar
  27. 27.
    Method for producing thermally insulating fibre boards. USSR Inventor’s Certificate 743 980.Google Scholar
  28. 28.
    Method for producing loose thermally insulating material. USSR Inventor’s Certificate 1204 586.Google Scholar
  29. 29.
    Dzhigiris D. D., Polevoi, R. P., Mahova, M. F. and Polevoi, P. P. (1974) Thermal insulation of furnace with basalt fibre. Steklo i Keramika, 10, 6–8.Google Scholar
  30. 30.
    Mahova, M. F., Dzhigiris, D. D., Gorobinskaya, V. D. et al. (1985). Asbestoscement articles reinforced with mineral fibres. Konstruktsionnye Materialy i Struktura, 4, 18.Google Scholar
  31. 31.
    Sytnik, N. I., Mahova, M. F., Zenchenko, Yu. I. et al. (1985) Stability of coarse basalt fibres in hardening cement. Konstruktsionnye Materialy i Struktura, 3, 35–6.Google Scholar
  32. 32.
    Andreev, I. A., Gubareni, N. I., Demiyanenko, Yu. N. et al. (1986) Study of Coarse Basalt Fibres in Fibrous Cement Construction Composites, Chemical Engineering, Tekhnika, Kiev, pp. 51–4.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • V. I. Kostikov
  • M. F. Makhova
  • V. P. Sergeev
  • V. I. Trefilov

There are no affiliations available

Personalised recommendations