Advertisement

Methods of testing fibres and reinforced plastics

  • V. N. Bakulin
  • V. I. Kostikov
  • A. A. Rassokha
Chapter
  • 362 Downloads
Part of the Soviet Advanced Composites Technology Series book series (SACTS, volume 5)

Abstract

At present, there are three theoretically possible approaches to the determination of physical, mechanical and other properties of fibres:
  1. 1.

    testing of monofilaments [1];

     
  2. 2.

    testing of microplastic [2];

     
  3. 2.

    determination of fibre properties from the results of plastic property tests.

     

Keywords

Shear Strength Carbon Fibre Fibre Diameter Tangential Stress Radial Displacement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tensile strength and Young’s modulus for high-modulus single filament materials. ASTM Standards Annual 36, 3379–85.Google Scholar
  2. 2.
    Chiao, T. T., Hamstad, M. A. and Jessop, E. S. (1975) Tensile properties of an ultrahigh-strength graphite fibre in an epoxy matrix. ASTM Special Technical Publication, 580, 612–20.Google Scholar
  3. 3.
    Hashin, Z. (1979) Analysis of properties of fibre composites with anisotropic constituents. Journal of Applied Mechanics, 46 (3), 543–50.CrossRefGoogle Scholar
  4. 4.
    Jonson, J. W. (1969) Factors affecting the tensile strength of carbon-graphite fibres. Applied Polymer Symposia, 9, 229–43.Google Scholar
  5. 5a.
    Kobets, L. P. (1975) Study of the stability of physical and mechanical properties of carbon fibre. Mekhanica Polymerov, 3, 430–6;Google Scholar
  6. 5b.
    Kobets, L. P. (1975) Study of the stability of physical and mechanical properties of carbon fibre. Mekhanica Polymerov, 6, 1005–10.Google Scholar
  7. 6.
    Erasov, V. S. (1981) Development of methods and aids of micromechanical tests for the study of strength and deformation properties of reinforcing fibres of composite materials. Author’s abstract of dissertation for Candidate of Technological Science, MIFI, Moscow.Google Scholar
  8. 7.
    McMachon, P. E. (1973) Graphite fibre tensile property evaluation, in Analysis and Testing Methods for High Modulus Fibres and Composites, pp. 366–89.Google Scholar
  9. 8.
    Coleman, D. D. (1958) On the strength of classical fibres and fibre bundles. Journal of Mechanics and Physics of Solids, 7(1), 60–70.CrossRefGoogle Scholar
  10. 9.
    Weibull, W. (1969) Statistical Theory of the Strength of Materials, Stockholm.Google Scholar
  11. 10.
    Weibull, W. (1951) A statistical distribution function of wide applicability. Journal of Applied Mechanics, 8 (3), 293–7.Google Scholar
  12. 11.
    Bolotin, V. V. (1981) Mechanics of failure of composite materials. Problemy Prochnocty, 7, 3–8.Google Scholar
  13. 12.
    Fweben, C. and Rosen, B. W. (1970) A statistical theory of material strength with application to composite materials. Journal of Mechanics and Physics of Solids, 18, 189–206.CrossRefGoogle Scholar
  14. 13.
    Bolotin, V. V. (1976) A statistical theory of accumulation of damage in composite materials and the reliability scale effect. Mekhanica Polymerov, 2, 247–55.Google Scholar
  15. 14.
    Mileiko, S. G., Sorokin, N. M. and Tsirlin, A. M. (1976) Crack propagation in boron-aluminium composite. Mekhanica Polymerov, 6, 1010–17.Google Scholar
  16. 15.
    Tamuzh, V. P., Azarova, M. T., Bondarenko, V. M. et al. (1982) Failure of unidirectional carbon plastics and realization of fibre strength properties in them. Mekhanica Compozitsionnyh Materialov, 1, 34–41.Google Scholar
  17. 16.
    Cooper, G. and Pigott, M. (1979) Failure of materials, in Mechanics of Failure, Mir, Moscow, pp. 165–215.Google Scholar
  18. 17.
    Lantsa, F. (1982) A statistical analysis of strength of composite materials, in Achievements in the Field of Composite Materials, Metallurgiya, Moscow, pp. 181–9.Google Scholar
  19. 18.
    Tamuzh, V. P. (1979) Volumetric failure of unidirectional composite, in Proceedings of the First Soviet–American Symposium on Failure of Composite Materials, Zinatne, Riga, pp. 17–24.Google Scholar
  20. 19.
    Ovchinskii, A. S., Kopaev, I. M. and Bilgasaev, N. K. (1975) Method for plotting composite material deformation diagrams with account of the statistical distribution of reinforcing fibre strength. Mekhanica Polymerov, 6, 1021–31.Google Scholar
  21. 20.
    Freudental, A. M. (1968) Statistical approach to brittle fracture. Fracture, 1, 11–19.Google Scholar
  22. 21.
    Chwastiak, S., Barr, J. B. and Diclehenco, R. (1979) High strength carbon fibre from mesophase pitch. Carbon, 17(1), 49–53.CrossRefGoogle Scholar
  23. 22.
    Hitchon, J. W. and Phillips, D. C. (1979) Dependence of the strength of carbon fibres on length. Fibre Science and Technology, 12 (3), 217–33.CrossRefGoogle Scholar
  24. 23.
    Cooper, G. A. and Mayer, R. (1971) The strength of carbon fibres. Journal of Materials Science, 6 (1), 60–7.CrossRefGoogle Scholar
  25. 24.
    Kaelble, D. N., Dayes, P. I., Granel, L. W. et al. (1975) Interfacial mechanisms of moisture degradation in graphite-epoxy composite. Journal of Adhesion, 7(1), 25–54.CrossRefGoogle Scholar
  26. 25.
    Lomakina, O. G. (1975) The strength of composite materials based on CF. Author’s abstract of dissertation for Candidate of Technological Science, Blagonravov Institute of Machine Science.Google Scholar
  27. 26.
    Jones, B. F. and Peggs, J. D. (1974) The effect of fast neutron irradiation on the structure and mechanical strength of fibres. Journal of Nuclear Materials, 40 (2), 141–50.CrossRefGoogle Scholar
  28. 27.
    Bartenev, G. M. and Sidorov, A. B. (1966) A statistical theory of the strength of glass fibres. Mekhanica Polymerov, 1, 74–81.Google Scholar
  29. 28.
    Sidorov, A. B. (1967) A statistical theory of the strength of glass fibres and materials based on them. Author’s abstract of dissertation for Candidate of Technological Science, Lenin MGPI.Google Scholar
  30. 29.
    Bartenev, G. M. (1974) Superstrength and High-Strength Inorganic Glasses, Stroyizdat, Moscow.Google Scholar
  31. 30.
    Silyanov, O. F., Bondarenko, B. M., Gorbacheva, V. O. et al. (1981) Influence of CFM treatment temperature on their mechanical properties and possibilities of realization in composite materials, in Proceedings of 5th All Union Conference on Composite Materials, Moscow, Vol. 1, pp. 134–6.Google Scholar
  32. 31.
    Savitskii, A. V., Levin, B. Ya., Gorshkova, I.A. et al. (1977) The strength of filaments in microplastic. Mekhanica Polymerov, 5, 928–31.Google Scholar
  33. 32.
    Savitskii, A. V., Levin, B. Ya. et al. (1976) Reinforcing yarn in microplastics. Mekhanica Polymerov, 2, 368–72.Google Scholar
  34. 33.
    Andreev, A. S., Perepelkin, K. E., Slavinskii, S. I. et al. (1979) Evaluation of the reinforcing properties of fibres in unidirectional microplastics, in Proceedings of Conference on Reinforcing Plastic Materials with Fibrous Fillers, Saratov, pp. 38–42.Google Scholar
  35. 34.
    Tarnopolskii, Yu. M. and Klitsis, T. Ya. (1975) Statistical Testing Methods for Reinforced Plastics, Khimiya, Moscow.Google Scholar
  36. 35.
    Taylor, J. (1985) Introduction to the Theory of Errors, Mir, Moscow.Google Scholar
  37. 36.
    Strength calculations and tests. Mechanical testing methods for composite materials with polymer matrix. Compression test methods for composites at normal, elevated and reduced temperatures. GOST 25.602–80.Google Scholar
  38. 37.
    Fedoseev, S. D. and Puchkov, S. V. (1982) Kinetics of structural transformations in carbon fibre on high-temperature treatment. Khimiya Tverdogo Topliva, 5, 124–8.Google Scholar
  39. Analyse aux rayon X de la pyrolyse du carbon. Journal du Four Electrique, 6, 36 (1981).Google Scholar
  40. 39.
    Zyabitskii, A. (1979) Theoretical Basis of Fibre Spinning, Khimiya, Moscow, pp. 33–173.Google Scholar
  41. 40.
    Williams, J. H. and Lampert, N. R. (1980) Ultrasonic nondestructive evaluation of impact-damaged graphite fibre composite. Massachusetts Institute of Technology Report 80-24635.Google Scholar
  42. 41.
    Frantsevich, I. N. (1970) Composite Materials of Fibrous Construction, Naukova Dumka, Kiev.Google Scholar
  43. 42.
    Verhovets, A. P., Utevskii, A. S. et al. (1980) Relation between the moduli of elasticity of chemical fibres and unidirectionally reinforced materials. Mekhanica Compozitsionnyh Materialov, 4, 740–2.Google Scholar
  44. 43.
    Pilipenko, T. I. (1983) Chemical structure of epoxy oligomers in terms of carbon-plastic interlaminar shear strength, in Proceedings of 2nd All-Union Conference on Composite Polymeric Materials and their Application in the Economy, Tashkent, pp. 138–9.Google Scholar
  45. 44.
    Konkin, A. A. (1974) Carbon and Other High-Temperature-Resistant Fibrous Materials, Khimiya, Moscow.Google Scholar
  46. 45.
    Levin, B. M. (1967) The thermal expansion coefficient of heterogeneous materials. Mekhanica Tverdogo Topliva, 1, 88–94.Google Scholar
  47. 46.
    Method for determination of the thermal conductivity of fibres. USSR Inventor’s Certificate 1187 569.Google Scholar
  48. 47.
    Rosen, B. W. and Hashin, L. (1970) Effective thermal expansion coefficient and specific heats of composite materials. International Journal of Engineering Science, 8(1), 151–73.CrossRefGoogle Scholar
  49. 48.
    Althapp, A., Born, M. and Klose, E. (1980) Possibilities of measuring thermal conductivity of carbon materials. Freiberg. Forschungsh., A618, 251–66.Google Scholar
  50. 49.
    Kan, K. N. (1975) Problems in the Theory of Thermal Expansion of Polymers, LGTU, Leningrad.Google Scholar
  51. 50.
    Shmergelskii, G. S. and Avrasin, Ya. D. (1988) Optimization of conditions for moulding epoxy-glass and carbon plastics. Plastmassy, 5, 29–32.Google Scholar
  52. 51.
    Plastic materials: method for determination of the average coefficient of thermal expansion. GOST 15173-70 (CMEA Standard 2899-8).Google Scholar
  53. 52.
    Bakulin, V. N. and Rassokha, A. A. (1987) Finite-Element Method and Holographic Interferometry in the Mechanics of Composites, Mashinostroenie, Moscow.Google Scholar
  54. 53.
    Ostrovskii, Yu. I., Butusov, M. M. and Ostrovsraya, G. V. (1977) Interference Holography, Nauka, Moscow.Google Scholar
  55. 54.
    Malmeister, A. K., Tamuzh, V. P. and Teters, G. A. (1967) Resistance of Stiff Polymeric Materials, Zinatne, Riga.Google Scholar
  56. 55.
    Vanin, G. A. (1979) Interaction of cracks in fibrous media, in Failure of Composite Materials. Riga, pp. 38–45.Google Scholar
  57. 56.
    Deniel, I. M. (1972) Photoelastic Study of Composite Materials, Mashinostroenie, Moscow, pp. 492–552.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • V. N. Bakulin
  • V. I. Kostikov
  • A. A. Rassokha

There are no affiliations available

Personalised recommendations