Advertisement

Constraints on Long-Period Sea Level Variations from Global Tide Gauge Data

  • Andrew S. Trupin
  • John M. Wahr
Chapter
Part of the NATO ASI Series book series (ASIC, volume 334)

Abstract

We use monthly, global tide gauge data archived at the Permanent Service for Mean Sea Level to search for: (1) the 18.6-year ocean tide; (2) the 14-month pole tide in the deep ocean and in the North Sea region; (3) the response of the ocean to variations in atmospheric pressure; (4) the global rise in sea level; and (5) vertical crustal motions due to post glacial rebound. We typically use data from all of the tide gauges in an individual analysis, employing techniques such as data stacking and least-squares-fitting in time and space. We conclude: (a) the 18.6-year tide and 14-month pole tide in the deep ocean are consistent with equilibrium values to within 20–30%; (b) it is possible that the apparently anomalous pole tide in the North Sea region could, instead, be a response to meteorological forcing of some kind; (c) the response of the deep ocean to variations in atmospheric pressure at periods between 2 months and several decades is consistent with the inverted barometer assumption to within about 5%; (d) the global rise in sea level over the last century has been between 1.45 and 2.60 mm/yr, with a preferred value of 1.75 mm/yr; (e) Peltier’s (1986) model for the vertical uplift caused by post glacial rebound is, in general, in good agreement with the global tide gauge data. Our results suggest the tide gauge data could be useful to help refine post glacial rebound models in the future.

Keywords

Ocean Tide Tide Gauge Data Pole Tide Chandler Wobble Inverted Barometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carton, J.A. and Wahr, J. (1986) ‘Modeling the Pole tide and its Effect on the Earth’s Rotation’, Geophys. J.R. astr. Soc., 84, 121–138.CrossRefGoogle Scholar
  2. Dahlen, F.A. (1976) ‘The passive influence of the oceans on the rotation of the earth’, Geophys. J. R. Astr. Soc., 46, 363–406.CrossRefGoogle Scholar
  3. Dickman, S.R. (1988) ‘The self-consistent dynamic pole tide in non-global oceans’, Geophys. J., 94, 519–543.CrossRefGoogle Scholar
  4. Ekman, M. and Stigebrandt, A. (1990) ‘Secular change of the seasonal variation in sea level and of the pole tide in the Baltic Sea’, J. Geophys. Res., 95, 5379–5383.CrossRefGoogle Scholar
  5. Emery, K.O. (1980) ‘Relative Sea level from Tide-gauge records’, Proceedings of the National Academy of Sciences, 77, 6968–6972.CrossRefGoogle Scholar
  6. Hansen, J., Johnson, D., Lacis, A., Lebedeff, S., Lee, P., Rind, D., and Russel, G. (1981) ‘Climate impact of increasing atmospheric carbon dioxide’, Science, 213, 957–966.CrossRefGoogle Scholar
  7. Lambeck, K., and Nakiboglu, S. M. (1984) ‘Recent global changes in sea level’, Geophys. Res. Lett., 11, 959–961.CrossRefGoogle Scholar
  8. Lambeck, K., and Nakiboglu, S. M. (1983) ‘Long-period Love numbers and their frequency dependence due to dispersion effects’, Geophys. Res. Lett., 10, 857–860.CrossRefGoogle Scholar
  9. Lindberg, C.R., Park, J., and Thomson, D.J. (1987) ‘Multiple Taper Analysis of Terrestrial Free Oscillations, parts I and II’, Geophys. J.R. astr. Soc., 91, 755–836.CrossRefGoogle Scholar
  10. Miller, S. P., and Wunsch, C. (1973) The pole tide’, Nature Phys. Sci., 246, 98–102.Google Scholar
  11. Munk, W.H. and MacDonald, G.J.F. (1975) The Rotation of the Earth, Cambridge University Press, Cambridge.Google Scholar
  12. O’Connor, W.P. (1986) ‘The 14 Month Wind Stressed Residual Circulation (Pole Tide) in the North Sea’, NASA Technical Memorandum 87800.Google Scholar
  13. O’Connor, W. P., and Starr, X.X., ‘Approximate particular solutions for the pole tide in a global ocean’, Geophys. J. R. Astron. Soc., 75, 397–405.Google Scholar
  14. Peltier, W. R. (1986) ‘Deglaciation-induced vertical motion of the North American continent and transient lower mantle rheology’, J. Geophys. Res., 91, 9099–9023.CrossRefGoogle Scholar
  15. Peltier W. R. and Tushingham, A.M. (1989) ‘Global sea level rise and the greenhouse effect: might they be connected?’, Science, 244, 806–810.CrossRefGoogle Scholar
  16. Rubincam, D.P. (1984) ‘Postglacial rebound observed by Lageos and the effective viscosity of the lower mantle’, J. Geophys. Res., 89, 1077–1088.CrossRefGoogle Scholar
  17. Smith, M.L. and Dahlen, F.A. (1981) ‘The period and Q of the Chandler Wobble’, Geophys. J. R. astr. Soc., 64, 223–282.CrossRefGoogle Scholar
  18. Thomson, D.J. (1982) ‘Spectrum Estimation and Harmonic Analysis’, Proceedings of the IEEE, 70, No. 9.Google Scholar
  19. Trupin, A. and Wahr, J. (1990) ‘Spectroscopic analysis of global tide gauge sea level data’, Geophys. J. Int., 100, 441–453.CrossRefGoogle Scholar
  20. Wagner, C.A. and D.C. McAdoo (1986) ‘Time Variations in the Earth’s Gravity Field Detectable With Geopotential Research Mission Intersatellite Tracking’, J. Geophys. Res., 91, 8373–8386.CrossRefGoogle Scholar
  21. Wahr, J.M. (1983) ‘The effects of the atmosphere and oceans on the earth’s wobble and on the seasonal variations in the length of day - 2. Results’, Geophys. J. R. astr. Soc., 74, 451–487.Google Scholar
  22. Wunsch, C. (1972) ‘Bermuda sea level in relation to times, weather and baroclinic fluctuations’, Rev. Geophys. Space Phys., 10, 1–49.CrossRefGoogle Scholar
  23. Wunsch, C. (1986) ‘Dynamics of the North Sea Pole Tide Reconsidered’, Geophys. J. R. astr. Soc., 87, 869–884.CrossRefGoogle Scholar
  24. Yumi, S., and Yokoyama, K. (1980) ‘Results of the International Latitude Service in a homogeneous system, 1899.9–1970.0’, Publication, Cent. Bureau Int. Polar Motion Service, Mizusawa, Japan.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • Andrew S. Trupin
    • 1
  • John M. Wahr
    • 1
  1. 1.Department of Physics and Cooperative Institute for Research in Environmental SciencesUniversity of ColoradoBoulderUSA

Personalised recommendations