Advertisement

Crustal Deformation Due to Aseismic Slip on Buried Faults

  • M. Dragoni
Chapter
  • 157 Downloads
Part of the NATO ASI Series book series (ASIC, volume 334)

Abstract

Besides being earthquake sources, active faults can slip aseismically. Aseismic slip plays an important role in releasing stress along plate boundaries and should be considered in the interpretation of geodetic measurements in tectonically active areas. An asperity model is presented showing that, due to the heterogeneity of fault surfaces, aseismic slip occurs through advancing dislocation fronts. The ground deformation pattern produced by such propagating dislocations is studied by calculating tilt as a function of time produced by a dislocation front moving at constant velocity in an elastic half-space model.

Keywords

Shear Zone Fault Plane Slip Rate Fault Slip Ground Deformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aki, K. (1979). Characterization of barriers on an earthquake fault, J. Geophys. Res., 84, 6140–6148.CrossRefGoogle Scholar
  2. Angevine, C. L., Turcotte, D. L. and Furnish, M. D. (1982). Pressure solution lithification as a mechanism for the stick-slip behavior of faults, Tectonics, 1, 151–160.CrossRefGoogle Scholar
  3. Archuleta, R.J. (1984). A faulting model for the 1979 Imperial Valley earthquake, J. Geophys. Res., 89, 4559–4585.CrossRefGoogle Scholar
  4. Bella, F., Bella, R., Ermini, A., Sgrigna, V. and Biagi, P. F. (1986). Possible precursory tilts preceding some earthquakes occurred in Central Italy between February 1981 and June 1983, Earthq. Pred. Res., 4, 147–154.Google Scholar
  5. Bilby, B. A. and Eshelby, J. D. (1968). Dislocations and the theory of fracture, in Fracture, An Advanced Treatise, vol. 1, pp. 99–182, ed. Liebowitz, H., Academic Press, New York.Google Scholar
  6. Bonafede, M., Dragoni, M. and Boschi, E. (1985). Quasi-static crack models and the frictional stress threshold criterion for slip arrest, Geophys. J. R. astr. Soc., 83, 615–637.CrossRefGoogle Scholar
  7. Brace, W.F. and Byerlee, J.D. (1966). Stick-slip as a mechanism for earthquakes, Science, 153, 990–992.CrossRefGoogle Scholar
  8. Brune, J. N. (1968). Seismic moment, seismicity and rates of slip along major fault zones, J. Geophys. Res., 73, 777–784.CrossRefGoogle Scholar
  9. Caloi, P. and Spadea, M. C. (1955). Prime indicazioni di registrazioni clinografiche ottenute in zone ad elevata sismicità, Ann. Geofis., 8, 121–133.Google Scholar
  10. Chen, W. P. and Molnar, P. (1983). Focal depths of intracontinental and intraplate earthquakes and their implications for the thermal and mechanical properties of the lithosphere, J. Geophys. Res., 88, 4183–4214.CrossRefGoogle Scholar
  11. Chinnery, M. A. (1961). The deformation of the ground around surface faults, Bull. Seismol. Soc. Am., 51, 355–372.Google Scholar
  12. Chinnery, M. A. (1963). The stress changes that accompany strike-slip faulting, Bull. Seismol. Soc. Am., 53, 921–932.Google Scholar
  13. Das, S. and Aki, K. (1977). Fault planes with barriers: a versatile earthquakes model, J. Geophys. Res., 82, 5658–5670.CrossRefGoogle Scholar
  14. Das, S. and Scholz, C.H. (1981). Theory of time-dependent rupture in the Earth, J. Geophys. Res., 86, 6039–6051.CrossRefGoogle Scholar
  15. Davies, G.F. and Brune, J.N. (1971). Regional and global fault slip rates from seismicity, Nature Phys. Sci., 229, 101–107.Google Scholar
  16. De Rossi, M. S. (1875). La Meteorologia endogena, 2 voll., Milano.Google Scholar
  17. Dieterich, J.H. (1974). Earthquake mechanisms and modeling, Annu. Rev. Earth Planet. Sci., 2, 275–301.CrossRefGoogle Scholar
  18. Dieterich, J.H. (1978). Preseismic fault slip and earthquake prediction, J. Geophys. Res., 83, 3940–3948.CrossRefGoogle Scholar
  19. Dieterich, J.H. (1979 a). Modeling of rock friction, 1. Experimental results and constitutive equations, J. Geophys. Res., 84, 2161–2168.CrossRefGoogle Scholar
  20. Dieterich, J.H. (1979 b). Modeling of rock friction, 2. Simulation of preseismic slip, J. Geophys. Res., 84, 2169–2175.CrossRefGoogle Scholar
  21. Dragoni, M. (1988 a). Role of geodetic measurements in the detection of fault asperities, Proceedings of the 3rd International Conference on the WEGENER-MEDLAS Project, pp. 129–146, eds. Baldi P. and Zerbini S., Esculapio, Bologna.Google Scholar
  22. Dragoni, M. (1988 b). A model of interseismic stress evolution in a transcurrent shear-zone, Tectonophysics, 149, 265–273.CrossRefGoogle Scholar
  23. Dragoni, M. (1990). A model of interseismic fault slip in the presence of asperities, Geophys. J. Int., 101, 147–156.CrossRefGoogle Scholar
  24. Dragoni, M., Bonafede, M. and Boschi, E. (1984/85). On the interpretation of slow ground deformation precursory to the 1976 Friuli earthquake, Pure Appl. Geophys., 122, 781–792.CrossRefGoogle Scholar
  25. Dragoni, M., Bonafede, M. and Boschi, E. (1986). Shallow earthquakes in a viscoelastic shear zone with depth-dependent friction and rheology, Geophys. J. R. astr. Soc., 86, 617–633.CrossRefGoogle Scholar
  26. Erdogan, F., Gupta, G.D. and Cook, T.S. (1973). Numerical solution of singular integral equations, in Mechanics of Fracture, vol. 1, chapt. 7, ed. Sih, G.C., Noordhoff, Leyden.Google Scholar
  27. Harris, R.A. and Segali, P. (1987). Detection of a locked zone at depth on the Parkfield, California, segment of the San Andreas Fault, J. Geophys. Res., 92, 7945–7962.CrossRefGoogle Scholar
  28. Hartzell, S.H. and Heaton, T.H. (1986). Rupture history of the 1984 Morgan Hill, California, earthquake from the inversion of strong motion records, Bull. Seism. Soc. Am., 76, 649–674.Google Scholar
  29. Husseini, M.I. and Randall, M.J. (1976). Rupture velocity and radiation efficiency, Bull. Seismol. Soc. Am., 66, 1173–1187.Google Scholar
  30. Ida, Y. (1974). Slow-moving dislocation pulses along tectonic faults, Phys. Earth Planet. Inter., 9, 328–337.CrossRefGoogle Scholar
  31. Johnston, M.J.S. and Mortensen, C. E. (1974). Tilt precursors before earthquakes on the San Andreas Fault, California, Science, 186, 1031–1034.CrossRefGoogle Scholar
  32. Kanamori, H. and Stewart, G.S. (1978). Seismological aspects of the Guatemala earthquake of February 4, 1976, J. Geophys. Res., 83, 3427–3434.CrossRefGoogle Scholar
  33. Kostrov, B. V. and Das, S. (1982). Idealized models of fault behavior prior to dynamic rupture, Bull. Seism. Soc. Am., 72, 679–703.Google Scholar
  34. Lay, T., Kanamori, H. and Ruff, L. (1982). The asperity model and the nature of large subduction zone earthquakes, Earthq. Pred. Res., 1, 3–71.Google Scholar
  35. Madariaga, R. (1979). On the relation between seismic moment and stress drop in the presence of stress and strength heterogeneity, J. Geophys. Res., 84, 2243–2250.CrossRefGoogle Scholar
  36. Meissner, R. and Strehlau, J. (1982). Limits of stresses in continental crusts and their relations to the depth-frequency distribution of shallow earthquakes, Tectonics, 1, 73–89.CrossRefGoogle Scholar
  37. Mogi, K. (1985). Earthquake Prediction, Academic Press, Tokyo.Google Scholar
  38. Mortensen, C. E. and Johnston, M. J. S. (1976). Anomalous tilt preceding the Hollister earthquake of November 28, 1974, J. Geophys. Res., 81, 3561–3566.CrossRefGoogle Scholar
  39. Okubo, P. G. and Dieterich, J. H. (1986). State variable constitutive relations for dynamic slip, in Earthquake Source Mechanics, pp. 25–35, eds. Das S., Boatwright J. and Scholz C. H., Amer. Geophys. Union, Washington.CrossRefGoogle Scholar
  40. Paterson, M. S. (1978). Experimental Rock Deformation - The Brittle Field, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  41. Prescott, W. H. and Nur, A. (1981). The accommodation of ralative plate motion at depth on the San Andreas fault system in California, J. Geophys. Res., 86, 999–1004.CrossRefGoogle Scholar
  42. Press, F. (1965). Displacements, strains and tilts at teleseismic distances, J. Geophys. Res., 70, 2395–2412.CrossRefGoogle Scholar
  43. Rice, J. R. and Ruina, A. (1983). Stability of steady frictional slipping, J. Appl. Mech., 50, 343–349.CrossRefGoogle Scholar
  44. Rice, J. R. and Simons, D. A. (1976). The stabilization of spreading shear faults by coupled deformation-diffusion effects in fluid-infiltrated porous materials, J. Geophys. Res., 81, 5322–5334.CrossRefGoogle Scholar
  45. Rikitake, T. (1976). Earthquake prediction, Elsevier, Amsterdam.Google Scholar
  46. Rudnicki, J.W. and Kanamori, H. (1981). Effects of fault interaction on moment, stress drop, and strain energy release, J. Geophys. Res., 86, 1785–1793.CrossRefGoogle Scholar
  47. Ruina, A. (1983). Slip instability and state variable friction laws, J. Geophys. Res., 88, 10359–10370.CrossRefGoogle Scholar
  48. Savage, J. C. and Burford, R. O. (1973). Geodetic determination of relative plate motions in central California, J. Geophys. Res., 78, 832–845.CrossRefGoogle Scholar
  49. Scholz, C. H. (1968). Microfracturing and the inelastic deformation of rock, J. Geophys. Res., 73, 1417–1432.CrossRefGoogle Scholar
  50. Scholz, C.H., Wyss, M. and Smith, S.W. (1969). Seismic and aseismic slip on the San Andreas fault, J. Geophys. Res., 74, 2049–2069.CrossRefGoogle Scholar
  51. Sibson, R. H. (1982). Fault zone models, heat flow and the depth distribution of earthquakes in the continental crust of the United States, Bull. Seismol. Soc. Am., 72, 151–163.Google Scholar
  52. Steketee, J. A. (1958). On Volterra’s dislocations in a semi-infinite elastic medium, Can. J. Phys., 36, 192–205.CrossRefGoogle Scholar
  53. Stuart, W.D., Archuleta, R.J. and Lindh, A.G. (1985). Forecast model for moderate eathquakes near Parkfield, California, J. Geophys. Res., 90, 592–604.CrossRefGoogle Scholar
  54. Tse, S.T., Dmowska, R. and Rice, J.R. (1985). Stressing of locked patches along a creeping fault, Bull. Seism. Soc. Am., 75, 709–736.Google Scholar
  55. Tullis, T.E. and Weeks, J.D. (1986). Constitutive behavior and stability of frictional sliding of granite, Pure Appl. Geophys., 124, 383–414.CrossRefGoogle Scholar
  56. Wang, C.-Y. (1984). On the constitution of the San Andreas Fault Zone in Central California, J. Geophys. Res., 89, 5858–5866.CrossRefGoogle Scholar
  57. Yamashita, T. (1978). Dislocation distribution and the mutual dependence of static source parameters in the presence of non-uniform initial stress, J. Phys. Earth, 26, 167–183.CrossRefGoogle Scholar
  58. Yuen, D. A., Fleitout, L., Schubert, G. and Froidevaux, C. (1978). Shear deformation zones along major transform faults and subducting slabs, Geophys. J. R. astr. Soc., 54, 93–120.CrossRefGoogle Scholar
  59. Zadro, M. (1978). Use of tiltmeters for the detection of forerunning events in seismic areas, Boll. Geod. Sci. Affini, 37, 597–618.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • M. Dragoni
    • 1
  1. 1.Dipartimento di FisicaUniversità di BolognaBolognaItalia

Personalised recommendations