Advertisement

Perturbations in the Earth’s Rotation Induced by Internal Density Anomalies: Implications for Sea-Level Fluctuations

  • R. Sabadini
  • G. Spada
  • Y. Ricard
Chapter
  • 153 Downloads
Part of the NATO ASI Series book series (ASIC, volume 334)

Abstract

The effects of internal mass anomalies on the Earth’s rotation are analyzed within the framework of linearized Liouville equations and Maxwell rheology for the mantle. Our approach is appropriate for a simplified modeling of subduction. Sea-level fluctuations induced by long-term rotational instabilities are also considered. The displacement of the Earth’s axis of rotation, called true polar wander, and associated eustatic sea-level fluctuations are very sensitive to the viscosity profile of the mantle and to the amount of chemical stratification at the 670 km seismic discontinuity. Phase-change models for the transition zone generally allow for huge amount of polar wander, except for large viscosity increase; the dominant contribution in Liouville equations comes from a secular term that reflects the viscous behaviour of the mantle. For chemically stratified models, true polar wander is drastically reduced as a consequence of complete dynamic compensation of the mass anomalies at the upper-lower mantle interface; when the source is embedded in the upper mantle in the proximity of the chemical density jump, transient rotational modes are the leading terms in Liouville equations. For all the models, internal density anomalies are important sources of true polar wander. We suggest that this long-term rotation instability must be considered as a valuable contributor to the third order cycles in the eustatic sea-level curves. Rates of sea- level fluctuations of the order of 0.05–0.1 mm/yr are obtained for displacements of the Earth’s axis of rotation compatible with paleomagnetic data

Keywords

Lower Mantle Love Number Density Anomaly Lowstand System Tract Mantle Viscosity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, D. L. (1982), ‘Hotspots, polar wander, Mesozoic convection and the geoid’, Nature, 297, 391–393.CrossRefGoogle Scholar
  2. Cloetingh, S., Lambeck, K., and McQueen, H. (1987), ‘Petroleum Geology of North West Europe’, J. Brooks and K. Glennie, eds, Graham Trotman, 49–57.Google Scholar
  3. Dahlen, F. A. (1976), ‘The passive influence of the oceans upon the rotation of the Earth’, Geophys. J. R. astron. Soc., 46, 363–406.CrossRefGoogle Scholar
  4. Fischer, A. G. (1982),”Climate in Earth History”, Studies in Geophysics, Washington, D.C., Natl. Academy Press, 97–104.Google Scholar
  5. Goldhammer, R. K., Dunn, P. A. and Hardie, L. A. (1987), Amer. J. Sci., 287, 853–892.CrossRefGoogle Scholar
  6. Gordon, R. G. (1987), ‘Polar wandering and paleomagnetism’, Rev. Earth planet Sci., 15, 567–593.CrossRefGoogle Scholar
  7. Gordon, R. G. and Livermore, R. A. (1987), ‘Apparent polar wander of the mean-lithosphere reference frame’, Geophys. J. R. astron. Soc., 91, 1049–1057.CrossRefGoogle Scholar
  8. Hanada, H. (1988), ‘Deformation of the viscoelastic earth due to the secular change in the Earth’s axis of rotation’, Geophysical Journal, 95, 315–321.CrossRefGoogle Scholar
  9. Haq, B. U., Hardenbol, J. and Vail, P. R. (1987), ‘Chronology of fluctuating sea levels since the Triassic’, Science, 235, 1156–1167.CrossRefGoogle Scholar
  10. Jurdy, D. M., (1983) ‘Early Tertiary subduction zones and hot-spots’, J. Geophys. Res., 88, 6395–6402.CrossRefGoogle Scholar
  11. Miller, K. G. and Kent, D. V. (1987), in Ross, C. A. and Haman, D. eds, Foundation for Foraminiferal Research Special Publication, 24, 51–56.Google Scholar
  12. Munk, W. H. and MacDonald, G. J. F. (1960),”The rotation of the Earth”, Cambridge University Press, New York.Google Scholar
  13. Nakiboglu, S. M. and Lambeck K. (1980), ‘Deglaciation effects on the rotation of the earth’, Geophys. J. R. astron. Soc., 62, 49–58.CrossRefGoogle Scholar
  14. Ricard, Y., Fleitout, L. and Froidevaux C. (1984), ‘Geoid heights and lithospheric stresses for a dynamic Earth’, Ann. Geophys., 2, 267–286.Google Scholar
  15. Ricard, Y. and Sabadini, R. (1990) ‘Rotational instabilities of the Earth induced by dynamically compensated density anomalies in the upper and lower mantle’, Geophys. Res. Lett., 17, 627–630.CrossRefGoogle Scholar
  16. Richards, M. A. and Hager, B. H. (1984), ‘Geoid anomaly in a dynamic Earth’, J. Geophys. Res., 89, 5987–6002.CrossRefGoogle Scholar
  17. Sabadini, R. and Peltier, W. R. (1981), ‘Pleistocene deglaciation and the Earth’s rotation: implications for mantle viscosity’, Geophys. J. R. astron. Soc., 66, 553–578.CrossRefGoogle Scholar
  18. Sabadini, R., Yuen, D. A. and Boschi, E. (1982), ‘Interaction of cryospheric forcings with rotational dynamics has consequences for ice ages’, Nature, 296, 338–341.CrossRefGoogle Scholar
  19. Sabadini, R., Yuen, D. A. and Boschi E. (1984), ‘A comparison of the complete and truncated versions of the polar wander equations’, J. Geophys. Res., 89, 7609–7620.CrossRefGoogle Scholar
  20. Sabadini, R., Yuen, D. A. and Gasperini, P. (1985), ‘The effects of transient rheology on the interpretation of lower mantle viscosity’, Geophys. Res. Lett., 12, 361–364.CrossRefGoogle Scholar
  21. Sabadini, R., Doglioni, C. and Yuen, D. A. (1990), ‘Eustatic sea level fluctuations induced by polar wander’, Nature, 345, 647–750.CrossRefGoogle Scholar
  22. Sager, W. W. and Bleil, U. (1987), ‘Latitudinal shift of Pacific hotspots during the late Cretaceous and Early Tertiary’, Nature, 326, 488–490.CrossRefGoogle Scholar
  23. Spada, G., Yuen, D. A., Sabadini, R., Morin, P. J. and Gasperini, P. (1990), ‘A computer-aided, algebraic approach to the post-glacial rebound problem’, The Mathematica Journal, in press.Google Scholar
  24. Takeuchi, H., Saito, M. and Kobayashi, N. (1962), ‘Statical deformations and free oscillations of a model earth’, J. Geophys. Res., 67, 1141–1154.CrossRefGoogle Scholar
  25. Tanimoto, T. (1989), ‘Moment of inertia of three-dimensional models of the Earth’, Geophys. Res. Lett., 16, 389–392.CrossRefGoogle Scholar
  26. Vail, P. R., Mitchium, R. M., Jr., Todd, R. G., Widmier, J. M., Thompson, S., III, Sangree, J.B., Bubb., J.N. and Hatlelid, W.G. (1977),”Seismic stratigraphy and global changes of sea level” in Payton, C.E. ed., American Association of Petroleoum Geologists Memoir, 26, 49–212.Google Scholar
  27. Wu, P. and Peltier, W. R. (1982), ‘Glacial isostatic adjustment and the free air gravity anomaly as a constraint of deep mantle viscosity’, Geophys. J. R. astron. Soc. 74, 377–449.Google Scholar
  28. Wu, P. and Peltier W. R. (1984), ‘Pleistocene glaciation and the earth’s rotation: a new analysis’, Geophys. J. R. astron. Soc., 76, 753–791.CrossRefGoogle Scholar
  29. Yuen, D. A., Sabadini, R. and Boschi, E. (1982), ‘The viscosity of the lower mantle as inferred from rotational data’, J. Geophys. Res., 87, 10745–10762.CrossRefGoogle Scholar
  30. Yuen, D.A. and Fleitout, L. (1985), ‘Thinning of the lithosphere by small-scale convective destabilization’, Nature, 313, 125–128.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • R. Sabadini
    • 1
  • G. Spada
    • 1
  • Y. Ricard
    • 1
  1. 1.Dipartimento di Fisica - Settore GeofisicaUniversita’ di BolognaBolognaItaly

Personalised recommendations