Continental Evolution and Archaeo-Sea-Levels

  • N. J. Vlaar
  • A. P. Van Den Berg
Part of the NATO ASI Series book series (ASIC, volume 334)


The Archaean geodynamic regime is related to the process of mantle diapirism and creation of oceanic crust and lithosphere. Thick Archaean basaltic crust, by internal instability and convection and repeated melting could produce continental crust, which accumulated into proto-continents.

Large vertical displacements of the Archaean continental crust can be explained in terms of specific isostatic conditions and intensive erosion and deposition due to a falling relative sealevel. Accretion by underplating of new crust from the mantle is accomplished by renewed partial melting of the partially depleted mantle root.

Given that Archaean cratons and their tectosphere have stabilized shortly after their formation, the proposed geodynamic process must have taken place in a relatively short time interval. Corresponding relative sealevel changes amount to a magnitude of the order of kilometers.


Oceanic Crust Plate Tectonic Oceanic Lithosphere Basalt Layer Mantle Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arndt, N.T., (1983) ’Ultrabasic magmas and high degree melting of the mantle’, Contr. Mineral. Petrol., 64, 205–221CrossRefGoogle Scholar
  2. Bickle, M.J., (1986) ’Implications of melting for stabilisation of the lithosphere and heat loss in the Archaean’, Earth and Planet Sci. Lett., 80, 314–324CrossRefGoogle Scholar
  3. Brune, J.N. & Dorman, J., (1963) ’Seismic waves and earth structure in the Canadian shield’, Bull, seismol. Soc. Am., 53,167–210Google Scholar
  4. Cloetingh, S., McQueen, H. and Lambeck, K., (1985) ’On a tectonic mechanism for regional sealevel variations’, Earth and Planet Sci. Lett., 75,157–166CrossRefGoogle Scholar
  5. Cloetingh, S., (1986) ’Intraplate stresses: A new tectonic mechanism for fluctuations of relative sealevel’, Geology, 14,617–620CrossRefGoogle Scholar
  6. Condie, K.C., (1984) ’Archean geotherms and supra crustal assemblages’, Tectonophysics, 105, 29–41CrossRefGoogle Scholar
  7. Goodwin, A.M., (1981) ’Precambrian Perspectives’, Science, 213, 55–61CrossRefGoogle Scholar
  8. Grant Cawthorn, R., (1975) ’Degrees of melting in mantle diapirs and the origin of ultrabasic liquids’, Earth and Planet. Sci. Lett., 27, 113–120CrossRefGoogle Scholar
  9. Hallam, A., (1977) ’Secular changes in marine inundation of USSR and North America through the Phanerozoic’, Nature 269,769–772CrossRefGoogle Scholar
  10. Hays, J.D. and Pitman, W.C., (1973) ’Lithospheric plate motion, sea-level changes and climatic and ecological consequences’, Nature 246, 18–22CrossRefGoogle Scholar
  11. Hofftnan, P.F. & Ranalli, G., (1988) ’Archaean oceanic flake tectonics’, Geophys. Res. Lett., 15, 1077–1080CrossRefGoogle Scholar
  12. Jaques, A.I., & Green, D.H., (1980) ’Anhydrous melting ofperidotite at 0–15 Kb pressure’, Contib. Mineral. Petrol., B73, 287–310CrossRefGoogle Scholar
  13. Jordan, T.H., (1975) ’The continental tectosphere’, Rev. Geophys. Space Phys., 13, 1–12CrossRefGoogle Scholar
  14. Jordan, T.H., (1979) ’Mineralogies, densities, and seismic velocities of garnet lherzolites and their geophysical implications’, in: Boyd, F.R. & Meyer, H.O.A. (eds.) ’The Mantle Sample: Inclusions in Kimberlites and Other Volcanics’, Washington, D.C.: American Geophysical Union, 1–14CrossRefGoogle Scholar
  15. Jordan, T.H., (1988) ’Structure and Formation of the Continental Tectosphere’, Journal of Petrology, Special Lithosphere Issue, 11–37Google Scholar
  16. Lemer-Lam, A.L., & Jordan, T.H. (1983) ’Earth structure from fundamental and higher-mode waveform analysis’, Geophys. J.R. astron. Soc. 75, 759–97CrossRefGoogle Scholar
  17. McKenzie, D., (1984) ’The Generation and Compaction of Partially Molten Rock’, Journal of Petrology, 25, 713–765CrossRefGoogle Scholar
  18. Nixon, P.H., & Boyd, F.R., (1973) ’Pedogenesis of the granular and sheared ultrabasic nodule suite in kimberlites’, in: Leotho Kimberlites, P.H. Nixon (ed), Lesotho National Development Corp., Maseru, LesotoGoogle Scholar
  19. Oxburgh, E.R., & Parmentier, E.M., (1977) ’Compositional and density stratification in oceanic lithosphere: causes and consequences’, J. Geol. Soc. Lond., 133, 343–355CrossRefGoogle Scholar
  20. Perkins, D. & Newton, R.C., (1981) ’Charnockite geobarometers based on coexisting garnet-pyroxene- plagioclase- quartz’, Nature, 292, 144–146CrossRefGoogle Scholar
  21. Ribe, N.M., (1985) ’The generation and composition of partial melts in the earth’s mantle’, Earth and Planet. Sci. Lett., 73, 361–376CrossRefGoogle Scholar
  22. Richter, F.M., & McKenzie, D., (1984) ’Dynamical models for melt segregation from a deformable matrix’, Journal of Geology, 92, 729–740CrossRefGoogle Scholar
  23. Sipkin, S.A. & Jordan, T.H., (1975) ’Lateral heterogeneity of the upper mantle determined from the travel times of ScS.’, J. Geophys. Res., 80, 1474–84CrossRefGoogle Scholar
  24. Sleep, N.H. and Windley, B.F., (1982) ’Archaean plate tectonics: Constraints and inferences’, J. Geol., 90, 363–379CrossRefGoogle Scholar
  25. Stolper, E., et al, (1981) ’Melt segregation from partially molten source regions: the importance of melt density and source region size’, J. geophys. Res., 86, 6261–71CrossRefGoogle Scholar
  26. Takahashi, E. & Kushiro, I., (1983) ’Melting of a dry peridotite at high pressures and basalt magma genesis.’, Am. Miner. 68, 859–879Google Scholar
  27. Takahashi, E. & Scarfe, C.M., (1985) ’Melting of peridotite to 14 GPa and the genesis of komatiite’, Nature, 315, 566–568CrossRefGoogle Scholar
  28. Tamey, J., & Windley, B.F., (1977) ’Chemistry, thermal gradients and evolution of the lower continental crust’, J. Geol. Soc, 134, 153–172CrossRefGoogle Scholar
  29. Toksoz, M.N. & Anderson, D.L., (1966) ’Phase velocities of long period surface waves and structure of the upper mantle’, J. geophys. Res., 71, 1649–58CrossRefGoogle Scholar
  30. Turcotte, D.L. and Burke, K., (1978) ’Global sea-level changes and the thermal structure of the earth’, Earth and Planet Sci. Lett., 41, 341–346CrossRefGoogle Scholar
  31. Vail, P.R., Mitchum, R.M. and Thompson, S., (1978) ’Seismic stratigraphy and global changes of sea level, 4. Global cycles of relative changes of sea level’, in: Seismic Stratigraphy — Applications to Hydrocarbon Exploration, ed., C.E. Payton ed.’, Am. Assoc. Pet. Geol., Mem., 26, 83–97Google Scholar
  32. Vlaar, N.J., (1985) ’Precambrian geodynamical constraints’, in: The Deep Proterozoic Crust in the North Atlantic Provinces’, A.C. Tobi and J.L.R. Touret (eds), D. Reidel Publishing CompanyGoogle Scholar
  33. Vlaar, N.J., (1986a) ’Archaean global dynamics’, Geologie en Mijnbouw, 65, 91–101Google Scholar
  34. Vlaar, N.J., (1986b) ’Geodynamic evolution since the Archaean’, Geophysics, 89, 387–406Google Scholar
  35. Woodhouse, J.H., & Dziewonski, A.M. (1984) ’Mapping the upper mantle: three-dimensional modeling of earth structure by inversion of seismic waveforms’, J. geophys. Res. 89, 5953–86CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • N. J. Vlaar
    • 1
  • A. P. Van Den Berg
    • 1
  1. 1.Department of Theoretical GeophysicsInstitute of Earth SciencesUtrechtThe Netherlands

Personalised recommendations