Advertisement

Intersections of Local Algebraic Extensions of a Hilbertian Field

  • Moshe Jarden
Chapter
Part of the NATO ASI Series book series (ASIC, volume 333)

Abstract

The main object of this work is to present a unified generalization of the “free generators theorem” of the author and Geyer’s theorem about the absolute Galois group of the intersection of Henselizations of a countable Hilbertian field K with respect to finitely many absolute values. We equip the absolute Galois group G(K) of K with its Haar measure and use the term “almost all” in the usual sense of measure theory.

Keywords

Prime Ideal Valuation Ring Galois Extension Monic Polynomial Algebraic Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A1]
    J. Ax, Solving diophantine problems modulo every prime, Annals of Mathematics 85 (1967), 161–183.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [A2]
    J. Ax, A mathematical approach to some problems in number theory, AMS Proc. Symp. Pure Math. XX (1971), 161–190.MathSciNetGoogle Scholar
  3. [AW]
    E. Artin and G. Whaples, Axiomatic characterization of fields by the product formula for valuations, Bulletin of AMS 51 (1945), 469–492.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [BNW]
    E. Binz, J. Neukirch and G.H. Wenzel, A subgroup theorem for free products of profinite groups, Journal of Algebra 19 (1971), 104–109.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [E]
    A.J. Engler, Fields with two incomparable Henselian valuation rings, manu-scripta mathematica 23 (1978), 373–385MathSciNetzbMATHGoogle Scholar
  6. [Ef]
    I. Efrat, The elementary theory of free pseudo p-adically closed fields of finite corank, Journal of Symbolic LogicGoogle Scholar
  7. [EJ]
    I. Efrat and M. Jarden, Free pseudo p-adically closed fields of finite corank, Journal of Algebra 133 (1990), 132–150.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [FJ]
    M.D. Fried and M. Jarden, Field Arithmetic, Ergebnisse der mathematik III 11, Springer, Heidelberg, 1986.Google Scholar
  9. [G]
    W.-D. Geyer, Galois groups of intersections of local fields, Israel Journal of Mathematics 30 (1978), 382–396.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [HL]
    D. Haran and A. Lubotzky, Maximal abelian subgroups of free profinite groups, Math. Proc. Camb. Phil. Soc. 97 (1985), 51–55.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [HJ]
    D. Haran and M. Jarden, The absolute Galois group of a pseudo p-adically closed field, Journal für die reine und angewandte Mathematik 383 (1988), 147–206.MathSciNetzbMATHGoogle Scholar
  12. [J1]
    M. Jarden, Algebraic extensions of finite corank of Hilbertian fields, Israel Journal of Mathematics 18 (1974), 279–307.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [J2]
    M. Jarden, The elementary theory of large e-fold ordered fields, Acta mathematica 149 (1982), 239–260.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [JK]
    M. Jarden and U. Kiehne, The elementary theory of algebraic fields of finite corank, Inventiones Mathematicae 30 (1975), 275–294.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [K]
    A.G. Kurosh, The Theory of Groups II, Chelsea, New York, 1960.Google Scholar
  16. [L]
    S. Lang, Algebra, Addison-Wesley, Reading, 1970.zbMATHGoogle Scholar
  17. [LS]
    R. C. Lyndon and P.E. Schupp, Combinatorial Group Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete 89, Springer, Berlin.Google Scholar
  18. [P]
    A. Prestel, Lectures on Formally Real Fields, Lecture Notes in Mathematics 1093, Springer, Berlin, 1984.Google Scholar
  19. [PZ]
    A. Prestel and M. Ziegler, Model theoretic methods in the theory of topological fields, Journal für die reine und angewandte Mathematik 299/300 (1978), 318–341.MathSciNetGoogle Scholar
  20. [R]
    P. Ribenboim, Théorie des valuations, Les Presses de l’Université de Montréal, Montréal, 1964.Google Scholar
  21. [Ri1]
    L. Ribes, Introduction to profinite groups and Galois Cohomology, Queen’s papers in pure and applied Mathematics 24, Queen’s University, Kingston, 1970.Google Scholar
  22. [Ri2]
    L. Ribes, The cartesian subgroup of a free product of profinite groups, preprint.Google Scholar
  23. [S]
    F.K. Schmidt, Mehrfach perfekte Körper, Mathematische Annalen 108 (1933), 1–25.MathSciNetCrossRefGoogle Scholar
  24. [ZS]
    O. Zariski and P. Samuel, Commutative Algebra II, Springer, New York.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • Moshe Jarden
    • 1
  1. 1.School of Mathematical Sciences, Raymond and Beverly Sackler, Faculty of Exact SciencesTel Aviv UniversityRamat Aviv, Tel AvivIsrael

Personalised recommendations