Advertisement

Generators of Automorphism Groups of Cayley Algebras

  • Huberta Lausch
Chapter
Part of the NATO ASI Series book series (ASIC, volume 333)

Abstract

All involutory automorphisms of a Cayley algebra C form a generating set for the automorphism group of C. The minimal number of involutory automorphisms needed to express an automorphism of C is called its length. For Cayley algebras C over fields of characteristic not 2 we determine the length of any automorphism of C. It turns out that every automorphism of a Cayley algebra is the product of at most three involutory automorphisms. Hence the automorphism groups of Cayley algebras are trireflectional. We derive some criteria for the bireflectionality of the automorphism group of a Cayley algebra and present examples of bi- and of trireflectional automorphism groups. Some remarks on Cayley algebras over fields of characteristic 2 are added.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arad, Z., Chillag, D. and Moran, G. ”Groups with a Small Covering Number” in Z. Arad and M. Herzog (eds.), Products of Conjugacy Classes in Groups, Lecture Notes in Mathematics 1112, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1985, 222–244.CrossRefGoogle Scholar
  2. 2.
    Aschbacher, M. ”Chevalley Groups of Type G 2 as the Group of a Trilinear Form”, J. Algebra 109 (1987), 193–259.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    van der Blij, F. and Springer, T. A. ”The Arithmetics of Octaves and of the Group G 2”, Indag. Math. 21 (1959), 406–418.Google Scholar
  4. 4.
    Ellers, E. W. and Lausch, Huberta ”Automorphisms of split Cayley Algebras over Real Closed Fields”, Geom. Dedicata 32 (1989), 25–29.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Faulkner, J. R. ”Octonion Planes Defined by Quadratic Jordan Algebras”, Mem. Amer. Math. Soc. no. 104, 1970.Google Scholar
  6. 6.
    Huppert, B. ”Isometrien von Vektorräumen I”, Arch. Math. 35 (1980), 164–176.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Jacobson, N. ”Composition Algebras and Their Automorphisms”, Rend. Circ. Mat. Palermo (2) (1958), 55–80.Google Scholar
  8. 8.
    Knüppel, F. and Nielsen, K. ”Products of Involutions in O +(V)”, Linear Algebra Appl. 94 (1987), 217–222.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Lausch, Huberta ”Automorphisms of Cayley Algebras over Finite Fields”, Res. Math. 15 (1989), 343–350.MathSciNetzbMATHGoogle Scholar
  10. 10.
    Lausch, Huberta ”Automorphisms of Cayley Algebras over p-adic Fields”, unpublished manuscript, 1990.Google Scholar
  11. 11.
    Neumann, Alf ”Bedingungen für die Zweispiegeligkeit der Automorphismen-gruppen von Cayleyalgebren”, Geom. Dedicata 34 (1990), 145–159.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Neumann, Alf ”Automorphismen von Cayleyalgebren über algebraischen Körpern ungerader Charakteristik”, to appear in Res. Math. (1990).Google Scholar
  13. 13.
    Schafer, R. ”An Introduction to Nonassociative Algebras”, Academic Press, New York, London, 1966.zbMATHGoogle Scholar
  14. 14.
    Taussky, O. and Zassenhaus, H. ”On the Similarity Transformation between a Matrix and its Transpose”, Pacific J. Math. 9 (1959), 893–896.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Wonenburger, M. J. ”Automorphisms of Cayley Algebras”, J. Algebra 12 (1969), 441–452.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • Huberta Lausch
    • 1
  1. 1.Department of MathematicsUniversity of WürzburgWürzburgWest-Germany

Personalised recommendations