Advertisement

Lie and Algebraic Johnsen Groups

  • Peter Plaumann
Chapter
  • 141 Downloads
Part of the NATO ASI Series book series (ASIC, volume 333)

Abstract

Johnsen groups are reflection groups introduced and classified by Strambach for the category of Lie groups. In these notes Strambach’s results are reported. In addition we prove analogous results for connected affine algebraic groups over an algebraically closed field of characteristic different from 2 which have a Levi splitting.

Keywords

Conjugacy Class Algebraic Group Maximal Torus Motion Group Maximal Compact Subgroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bachmann, F., Aufbau der Geometrie aus dem Spiegelungsbegriff. 2. Ergänzte Auflage. Springer-Verlag: Berlin-Heidelberg-New York 1973.zbMATHCrossRefGoogle Scholar
  2. 2.
    Carter, R.W., Finite Groups of Lie Type. John Wiley and Sons: Chi-chester-New York-Brisbane-Toronto-Singapore 1985.zbMATHGoogle Scholar
  3. 3.
    Freudenthal H. and de Vries, H., Linear Lie Groups. Academic Press: New York-London 1969.zbMATHGoogle Scholar
  4. 4.
    Hofmann, K.H., Liegruppen IL Vorlesungsausarbeitung, Tübingen 1963.Google Scholar
  5. 5.
    Humphreys, J.E., Linear Algebraic Groups. Springer-Verlag: New York-Heidelberg-Berlin 1981.zbMATHGoogle Scholar
  6. 6.
    Johnsen, K., Endliche Gruppen mit nicht-elliptischer Spiegelungsgeometrie. Geometriae Dedicata 2 (1973), 51–55.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Strambach, K., Spiegelungsgeometrie in Lie-Gruppen. Results in Math. 8 (1985), 176–193.MathSciNetzbMATHGoogle Scholar
  8. 8.
    Tits, J., Tabellen zu den einfachen Liegruppen und ihren Darstellungen. LNM 40, Springer-Verlag: Berlin-New York-Heidelberg 1967.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • Peter Plaumann
    • 1
  1. 1.Mathematisches InstitutUniversität Erlangen-Nürnberg8520ErlangenGermany

Personalised recommendations