Coxeter Groups and three Related Topics

  • Arjeh M. Cohen
Part of the NATO ASI Series book series (ASIC, volume 333)


The theory of Coxeter groups is surveyed. The three related topics referred to in the title are Tits geometries, computational Lie group theory, and Hecke algebras.


Weyl Group Coxeter Group Simple Path Minimal Path Chamber System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Alvis 1987]
    D. Alvis, The left cells of the Coxeter group of type H 4, J. Algebra, 107 (1987), 160–168.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [Appel 1984]
    K. Appel, On Artin groups and Coxeter groups of large type, Contemp. Math., 33 (1984), 50–78.MathSciNetCrossRefGoogle Scholar
  3. [ApSc 1983]
    K. Appel & P.E. Schupp, Artin groups and infinite Coxeter groups, Inventiones Math., 72 (1983), 201–220.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [BaVo 1982]
    D. Barbasch & D. Vogan, Primitive ideals and orbital integrals in complex classical groups, Math. Ann., 259 (1982), 153–199.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [BeBe 1981]
    A.A. Beilinson & J. Bernstein, Localisation des g-modules, C.R. Acad. Sci. Paris, Serie I, 292 (1981), 15–18.MathSciNetzbMATHGoogle Scholar
  6. [Béd 1986]
    R. Bédard, Cells for two Coxeter groups, Comm. Algebra, 14 (1986), 1253–1286.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [Béd 1989]
    R. Bédard, Left V-Cells for hyperbolic Coxeter groups, Comm. Algebra, 17 (1989), 2971–2997.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [Bezv 1986]
    V.N. Bezverkhnii, Solution to the conjugacy problem for words in Artin and Coxeter groups of large type, Tulsk. Gos. Ped. Inst., Tula, 126 (1986), 26–61.MathSciNetGoogle Scholar
  9. [Bjö 1984]
    A. Björner, Orderings of Coxeter groups, Contemp. Math., AMS, 34 (1984), 175–195.CrossRefGoogle Scholar
  10. [BjWa 1982]
    A. Björner & M. Wachs, Bruhat order of Coxeter groups and shellability, Adv. in Math., 43 (1982), 87–100.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [Bourb 1968]
    N. Bourbaki, Groupes et algèbres de Lie, Chap 4, 5, et 6, Hermann, Paris, 1968.Google Scholar
  12. [BCN 1989]
    A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-regular Graphs, Ergebnisse der Math. u.i. Grenzgeb. 3. Folge Band 18, Springer-Verlag, Berlin, 1989.Google Scholar
  13. [Brown 1989]
    K.S. Brown, Buildings, Springer-Verlag, New York, 1989.zbMATHGoogle Scholar
  14. [BrTi 1984]
    F. Bruhat & J. Tits, Groupes réductifs sur un corps local, II, Publ. Math. I.H.E.S., 60 (1984), 5–184.Google Scholar
  15. [BrKa 1981]
    J.-L. Brylinski & M. Kashiwara, Kazhdan-Lusztig conjecture and holonomic systems, Inventiones Math., 64 (1981), 387–410.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [BuCo 1990]
    F. Buekenhout & A.M. Cohen, Diagram Geometry, in preparation, 1990.Google Scholar
  17. [Cart 1985]
    R. W. Carter, Finite groups of Lie type: conjugacy classes and complex characters, Wiley, Chichester, 1985.zbMATHGoogle Scholar
  18. [CoRu 1990]
    A.M. Cohen & G.C.M. Ruitenburg, Generating functions and Lie Groups, preprint, (1990), 8pp.Google Scholar
  19. [CNS 1988]
    J.H. Conway, S.P. Norton, L.H. Soicher, The Bimonster, the group Y 555 and the projective plane of order 3, pp. 27–50 in: Computers in Algebra (eds.: M.C. Tangora), Lecture Notes in Pure & Applied Math. vol 111, Marcel Dekker, New York, 1988.Google Scholar
  20. [CSW 1989]
    J.H. Conway, N.J.A. Sloane, A.R. Wilks, Gray codes for reflection groups, Graphs and Combinatorics, 5 (1989), 315–325.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [Cox 1934]
    H.S.M. Coxeter, Finite groups generated by reflections and their subgroups generated by reflections, Proc. Cambridge Phil. Soc, 30 (1934), 466–282.CrossRefGoogle Scholar
  22. [Curtis 1987]
    C.W. Curtis, The Hecke algebra of a finite group, Proc. of Symp. in Pure Math., 47 (1987), 51–60.MathSciNetGoogle Scholar
  23. [CIK 1972]
    C.W. Curtis, N. Iwahori, R. Kilmoyer, Hecke algebras and characters of parabolic type of finite groups with BN-pairs, Publ. Math. IHES, 40 (1972), 81–116.Google Scholar
  24. [delaH 1987]
    O. de la Harpe, Groupes de Coxeter infinis non-affines, Exposition. Math., 5 (1987), 91–96.MathSciNetzbMATHGoogle Scholar
  25. [Deo 1977]
    V.V. Deodhar, Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Möbius Function, Inv. Math., 39 (1977), 187–198.MathSciNetCrossRefGoogle Scholar
  26. [Deo 1982]
    V.V. Deodhar, On the root system of a Coxeter group, Comm. Algebra, 10 (1982), 611–630.MathSciNetzbMATHCrossRefGoogle Scholar
  27. [Deo 1986]
    V.V. Deodhar, Some characterizations of Coxeter groups, Enseignements Math., 32 (1986), 111–120.MathSciNetzbMATHGoogle Scholar
  28. [Deo 1987a]
    V.V. Deodhar, On some geometric aspects of Bruhat orderings II. The parabolic analogue of Kazhdan-Lusztig polynomials, J. Algebra, 111 (1987a), 483–506.MathSciNetzbMATHCrossRefGoogle Scholar
  29. [Deo 1987b]
    V.V. Deodhar, A splitting criterion for the Bruhat orderings on Coxeter groups, Comm. Algebra, 15 (1987b), 1889–1894.MathSciNetzbMATHCrossRefGoogle Scholar
  30. [Deo 1989]
    V.V. Deodhar, A note on subgroups generated by reflections in Coxeter groups, Archiv d. Math., 53 (1989), 543–546.MathSciNetzbMATHCrossRefGoogle Scholar
  31. [DrSc 1988]
    A.W.M. Dress & E. Schulte, A local characterization of regular polytopes in terms of equivelarity, preprint, (1988), 10pp.Google Scholar
  32. [Du 1988a]
    Du Jie, The decomposition into cells of the affine Weyl group of type B 3, Comm. Algebra, 16 (1988a), 1383–1409.MathSciNetzbMATHCrossRefGoogle Scholar
  33. [Du 1988b]
    Du Jie, Two-sided cells in the affine Weyl group of type C 3, J. London Math. Soc, 38 (1988b), 87–98.MathSciNetzbMATHCrossRefGoogle Scholar
  34. [Du 1990]
    Du Jie, Cells in the affine Weyl group of type D 4 J. Algebra, 128 (1990), 384–404.MathSciNetzbMATHCrossRefGoogle Scholar
  35. [Dyer 1990]
    M. Dyer, Reflection subgroups of Coxeter systems, preprint M.I.T., (1990), 14 pp.Google Scholar
  36. [Fak 1989]
    A.P. Fakiolas, The Lusztig isomorphism for Hecke algebras of dihedral type, J. Algebra, 126 (1989), 466–492.MathSciNetzbMATHCrossRefGoogle Scholar
  37. [GaLa 1988]
    A.M. Garsia & T.J. McLarnan, Relations between Young’s natural and the Kazhdan-Lusztig representations of Sym n, Adv. Math., 69 (1988), 32–92.MathSciNetzbMATHCrossRefGoogle Scholar
  38. [Gyoja 1984]
    A. Gyoja, On the existence of a W-graph for an irreducible representation of a Coxeter group, J. Algebra, 86 (1984), 422–438.MathSciNetzbMATHCrossRefGoogle Scholar
  39. [GyUn 1989]
    A. Gyoja & K. Uno, On the semisimplicity of Hecke algebras, J. Math. Soc. Japan, 41 (1989), 75–79.MathSciNetzbMATHCrossRefGoogle Scholar
  40. [Heck 1988]
    A. Heck, A criterion for a triple (X, I, μ) to be a W-graph of a Coxeter group, Comm. Algebra, 16 (1988), 2083–2102.MathSciNetzbMATHCrossRefGoogle Scholar
  41. [Heckm 1982]
    G. Heckman, Projections of Orbits and Asymptotic Behavior of Multiplicities for Compact Connected Lie Groups, Inv. Math., 67 (1982), 333–356.MathSciNetzbMATHCrossRefGoogle Scholar
  42. [Hend 1985]
    H. Hendriks, Hyperplane complements of large type, Inv. Math., 79 (1985), 375–381.MathSciNetzbMATHCrossRefGoogle Scholar
  43. [Hill 1982]
    H. Hiller, Geometry of Coxeter Groups, Pitman, Boston, 1982.zbMATHGoogle Scholar
  44. [vdH 1974]
    A. van den Hombergh, About the automorphisms of the Bruhat-ordering in a Coxeter group, Indag. Math., 36 (1974), 125–131.Google Scholar
  45. [Howl 1988]
    R.B. Howlett, On the Schur multipliers of Coxeter groups, J. London Math. Soc, 38 (1988), 263–276.MathSciNetzbMATHCrossRefGoogle Scholar
  46. [Hum 1974]
    J.E. Humphreys, Introduction to Lie algebras and representation theory, Springer, New York, 1974.Google Scholar
  47. [JaKe 1981]
    G. James, A. Kerber, The Representation Theory of the Symmetric Group, Encyclopedia of Mathematics and its Applications, 16, Addison-Wesley, New York, 1981.Google Scholar
  48. [Jantz 1987]
    J.C. Jantzen, Representations of Algebraic Groups, Acad. Press, New York, 1987.zbMATHGoogle Scholar
  49. [Jos 1985]
    A. Joseph, On the Demazure character formula, Ann. Sc. Éc. Norm. Sup., 18 (1985), 389–419.zbMATHGoogle Scholar
  50. [Kac 1985]
    V.G. Kac, Infinite dimensional Lie algebras, 2nd ed., Cambridge University Press, Cambridge, 1985.zbMATHGoogle Scholar
  51. [KaLu 1979]
    D. Kazhdan & G. Lusztig, Representations of Coxeter Groups and Hecke algebras, Inv. Math., 53 (1979), 165–184.MathSciNetzbMATHCrossRefGoogle Scholar
  52. [KaLu 1987]
    D. Kazhdan & G. Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras, Inv. Math., 87 (1987), 153–215.MathSciNetzbMATHCrossRefGoogle Scholar
  53. [Kane 1987]
    M. Kaneda, On the inverse Kazhdan-Lusztig polynomials for affine Weyl groups, J. reine angew. Math., 381 (1987), 116–135.MathSciNetzbMATHGoogle Scholar
  54. [Kerov 1985]
    S. V. Kerov, W-graphs of representations of symmetric groups, J. Sov. Math., 28 (1985), 596–605.CrossRefGoogle Scholar
  55. [King 1971]
    R.C. King, Branching rules for classical Lie groups using tensor and spinor methods, J. Phys., A8 (1971), 429–449.Google Scholar
  56. [Koike 1987]
    K. Koike, On new multiplicity-formulas of weights of representations for the classical groups, J. Algebra, 107 (1987), 512–533.MathSciNetzbMATHCrossRefGoogle Scholar
  57. [Koike 1987]
    K. Koike, I. Terada, Young-diagrammatic methods for the representation theory of the classical groups of type B n, C n, D n, J. Algebra, 107 (1987), 466–511.MathSciNetzbMATHCrossRefGoogle Scholar
  58. [Kumar 1988]
    S. Kumar, Proof of the Pathasarathy-Ranga Rao-Varadarajan conjecture, Inv. Math., 93 (1988), 117–130.zbMATHCrossRefGoogle Scholar
  59. [Kumar 1989]
    S. Kumar, A refinement of the PRV-conjecture, Inv. Math., 97 (1989), 305–311.zbMATHCrossRefGoogle Scholar
  60. [LakSe 1986]
    V. Lakshmibai & C.S. Seshadri, Geometry of G/P V, J. Algebra, 100 (1986), 462–557.MathSciNetzbMATHCrossRefGoogle Scholar
  61. [LaSch 1982]
    A. Lascoux & M.-P. Schützenberger, Polynomes de Kazhdan-Lusztig pour les Grassmanniennes, Astérisque, 87–88 (1982), 249–266.Google Scholar
  62. [Lawt 1989]
    G. Lawton, Two-sided cells in the affine Weyl group of type à n -1, J. Algebra, 120 (1989), 74–89.MathSciNetzbMATHCrossRefGoogle Scholar
  63. [LeCh 1986]
    P. Le-Chenadec, Canonical forms in finitely presented algebras, Pitman, London, 1986.zbMATHGoogle Scholar
  64. [Litt 1987]
    P. Littelmann, A decomposition formula for Levi subgroups, preprint, (1987), 1–14.Google Scholar
  65. [Litt 1988]
    P. Littelmann, A Littlewood-Richardson rule for classical groups, C.R. Acad. Sci., Tome 306, série, 1, no 6 (1988), 299–303.MathSciNetGoogle Scholar
  66. [Lusz 1981]
    G. Lusztig, On a theorem of Benson and Curtis, J. Algebra, 71 (1981), 490–498.MathSciNetzbMATHCrossRefGoogle Scholar
  67. [Lusz 1983]
    G. Lusztig, Left cells in Weyl groups, Lie group representations, I Springer-Verlag Lecture Notes in Math., 1024 (1983), 99–111.MathSciNetGoogle Scholar
  68. [Lusz 1984]
    G. Lusztig, Characters of reductive groups over a finite field, Annals of Math. Studies 107, Princeton Univ. Press, 1984.Google Scholar
  69. [Lusz 1985]
    G. Lusztig, Cells in affine Weyl groups, Algebraic groups and related topics, Advanced Studies in Pure Math., 6 (1985), 255–287.MathSciNetGoogle Scholar
  70. [Lusz 1987]
    G. Lusztig, Cells in affine Weyl groups, II, J. Algebra, 109 (1987), 536–548.MathSciNetzbMATHCrossRefGoogle Scholar
  71. [Macd 1979]
    I.G. Macdonald, Symmetric functions and Hall polynomials, Oxford University Press, Oxford, 1979.zbMATHGoogle Scholar
  72. [MaSp 1988]
    J.G.M. Mars & T.A. Springer, Character sheaves, preprint RUU, 552 (1988), 88pp.Google Scholar
  73. [Mat 1988]
    O. Mathieu, FormuJe de charactère pour les algèbres de Kac-Moody géné-rales, Astérisque, (1988), 159–160.Google Scholar
  74. [McPa 1981]
    W.G. McKay, J. Patera, Tables of dimensions, indices, and branching rules for representations of simple Lie algebras, Marcel Dekker, New York, 1981.zbMATHGoogle Scholar
  75. [McMu 1967]
    P. McMullen, Combinatorially regular polytopes, Mathematika, 14 (1967), 142–150.MathSciNetzbMATHCrossRefGoogle Scholar
  76. [Neid 1986]
    W. Neidhardt, An algorithm for computing weight multiplicities in irreducible highest weight modules over Kac-Moody algebras, Algebras, Groups, Geom., 3 (1986), 19–26.MathSciNetzbMATHGoogle Scholar
  77. [RiSp 1989]
    R.W. Richardson & T.A. Spinger, The Bruhat order on symmetric varieties, RUU preprint, 597 (1989), 66pp.Google Scholar
  78. [Ron 1989]
    M. Ronan, Lecture on Buildings, Acad. Press, Boston, 1989.Google Scholar
  79. [Ser 1987]
    J.-P. Serre, Complex Semisimple Lie algebras, Springer Verlag, Berlin, 1987.zbMATHGoogle Scholar
  80. [Shi 1986]
    Jian-Yi Shi, The Kazhdan-Lusztig cells in certain affine Weyl groups, Lecture Notes in Math. 1179, Springer-Verlag, Berlin, 1986.Google Scholar
  81. [Shi 1987]
    Shi Jian-yi, Alcoves corresponding to an affine Weyl group, J. London Math. Soc, 35 (1987), 42–55.MathSciNetzbMATHCrossRefGoogle Scholar
  82. [Shi 1987]
    Shi Jian-yi, Sign types corresponding to an affine Weyl group, J. London Math. Soc, 35 (1987), 56–74.MathSciNetCrossRefGoogle Scholar
  83. [Shi 1987]
    Shi Jian-yi, A two-sided cell in an affine Weyl group, J. London Math. Soc, 36 (1987), 407–420.MathSciNetCrossRefGoogle Scholar
  84. [Shi 1988]
    Shi Jian-yi, A two-sided cell in an affine Weyl group, II, J. London Math. Soc, 37 (1988), 253–264.MathSciNetCrossRefGoogle Scholar
  85. [Shi 1989]
    Shi Jian-yi, Some recent developments on the cells of affine Weyl groups, Contemporary Math., 82 (1989), 159–169.CrossRefGoogle Scholar
  86. [Spri 1981]
    T.A. Springer, Linear algebraic groups, Birkhäuser, Basel, 1981.zbMATHGoogle Scholar
  87. [Spri 1982]
    T.A. Springer, Some remarks on involutions in Coxeter groups, Comm. Algebra, 10 (1982), 631–636.MathSciNetzbMATHCrossRefGoogle Scholar
  88. [Stan 1984]
    R. Stanley, On the number of reduced decompositions of elements of Coxeter groups, European J. Combinatorics, 5 (1984), 359–372.MathSciNetzbMATHGoogle Scholar
  89. [Tits 1969]
    J. Tits, Le problème des mots dans les groupes de Coxeter, Sympos. Math. Rome 1967/1968, Acad. Press, London, 1 (1969), 175–185.Google Scholar
  90. [Tits 1974]
    J. Tits, Buildings of spherical type and finite BN-pairs, Lecture Notes in Math. 386, Springer-Verlag, 1974.Google Scholar
  91. [Tits 1981]
    J. Tits, A locai approach to buildings, pp. 317–322 in: The Geometric Vein (Coxeter Festschrift) (eds.: Ch. Davies, B. Grünbaum, F.A. Scherk), Springer-Verlag, 1981.Google Scholar
  92. [Tits 1988]
    J. Tits, Sur le groupe des automorphisms de certains groupes de Coxeter, J. Algebra, 113 (1988), 346–357.MathSciNetzbMATHCrossRefGoogle Scholar
  93. [Tsar 1990]
    S.V. Tsaranov, Representation and classification of Coxeter monoids, preprint, Moscow, (1990), 24pp.Google Scholar
  94. [Var 1984]
    V.S. Varadarajan, Lie Groups, Lie Algebras, and their Representations, Graduate Texts in Math. 102, Springer, New York, 1984.Google Scholar
  95. [Vinb 1971]
    E. Vinberg, Discrete linear groups generated by reflections, Math USSR Izvestija, 5 (1971), 1083–1119.CrossRefGoogle Scholar
  96. [Vret 1988]
    L. Vretare, Character calculations for semisimple Lie algebras, Lund Institute of Technology Report, 11 (1988), 14 pp.Google Scholar
  97. [Wag 1980/1]
    A. Wagner, Determination of the finite primitive reflection groups over an arbitrary field of characteristic not 2, 1, II, III, Geom. Dedicata, 9,10,10 (1980/1), 239–253, 191–203, 475–523.Google Scholar
  98. [Wate 1989]
    W.C. Waterhouse, Automorphisms of the Bruhat order on Coxeter groups, Bull. London Math. Soc, 21 (1989), 243–248.MathSciNetzbMATHCrossRefGoogle Scholar
  99. [ZaSe 1981]
    A.E. Zalesskii & V.N. Serezkin, Finite linear groups generated by reflections, Math. USSR Izvestija, 17 (1981), 477–503.CrossRefGoogle Scholar
  100. [Zales 1983]
    A.E. Zalesskii, The fixed algebra of a group generated by reflections is not always free, Arch. Math., 41 (1983), 434–437.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • Arjeh M. Cohen
    • 1
    • 2
  1. 1.Centre for Mathematics and Computer ScienceAmsterdamThe Netherlands
  2. 2.Math. Inst., Rijksuniversiteit UtrechtUtrechtThe Netherlands

Personalised recommendations