Advertisement

The Pseudopotential Approach to the Interatomic Interaction Problem

  • L. Dagens
Chapter
  • 294 Downloads
Part of the NATO ASI Series book series (NSSE, volume 205)

Abstract

The main concepts of the pseudopotential theory are first discussed (equivalency, core states elimination, orthogonalization hole, transferability). The perturbative approach is used to derive the (sp-bonded) metal structural energy. The significance and limitations of the resulting volume plus pair force expression are next discussed. Finally, a few non perturbative approaches are presented.

Keywords

Core Region Local Density Approximation Core State Ionic Core Simple Metal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Drude, P. (1900) “Electronic theory of metals”, Ann. Physik 1, 566–578.ADSzbMATHCrossRefGoogle Scholar
  2. [2]
    Phillips, J.C. and Kleinman, L. (1959) “New method for calculating wave function in crystals and molecules”, Phys. Rev. 116, 287–293.ADSzbMATHCrossRefGoogle Scholar
  3. [3]
    Herring, C. (1940) “Orthogonalized plane waves method for band structure calculation”, Phys. Rev. 126, 1169–1182.ADSCrossRefGoogle Scholar
  4. [4]
    [43 Harrison, W. A. (1967) Pseudopotentials in the Theory of Metals, Benjamin, New-York.Google Scholar
  5. [5]
    Ehrenreich, H. and Cohen, M.H. (1959) “Selfconsistent field approach to the many electrons problem”, Phys. Rev. 115, 786–790.90.MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. [6]
    Abarenkov, I. and Heine, V. (1965) “The model potential for positive ions”, Phil. Mag. 12, 529–537.ADSCrossRefGoogle Scholar
  7. [7]
    Shaw, R.W. (1968) “Optimum form of a modified Heine-Abarenkov model potential”, Phys. Rev. 174, 769–781.ADSCrossRefGoogle Scholar
  8. [8]
    Ashcroft, N.W. (1966) “Electron-ion pseudopotentials in metals”, Phys. Letters 23, 48–49.ADSCrossRefGoogle Scholar
  9. [9]
    Hamann, D.R., Schlüter, M. and Chiang, C. (1979) “Norm-conserving pseudopotentials”, Phys. Rev. Lett. 43, 1494–1497.ADSCrossRefGoogle Scholar
  10. [10]
    Cohen, M. L. and Heine, V. (1970) “The fitting of pseudopotentials to experimental data”, Solid State Physics 24, Academic, New-York, pp. 38–249.Google Scholar
  11. [11]
    Heine, V. and Weaire, D. (1970) “Pseudopotential theory of cohesion and structure”, Solid State Physics 24, Academic, New-York, pp. 250–464.Google Scholar
  12. [12]
    Hohenberg, P. and Kohn, W. (1964) “Inhomogeneous electron gas”, Phys. Rev. 136, B864–871.MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    Kohn, W. and Sham, L.J. (1965) “Self-consistent equations including exchange and correlation effects”, Phys. Rev. 140, A1133–1138.MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    Dagens, L. (1977) “The resonant model potential: II. Total energy : application to Cu, Ag, Au and Ca”, J. Phys. F: Metal Phys. 7, 1167.ADSCrossRefGoogle Scholar
  15. [15]
    Moriarty, J.A. (1972) “Total energy of Copper, Silver and Gold”, Phys. Rev. 6, 1239–1252.ADSGoogle Scholar
  16. [16]
    Moriarty, J.A. (1974) “Zero order pseudoatoms and the generalized pseudopotential theory”, Phys. Rev. 10, 30753091.Google Scholar
  17. [17]
    Carr, R. and Parrinello, M. (1985) “Uniform approach for molecular dynamics and density-functional theory”, Phys. Rev. Lett. 55, 2471–2474.ADSCrossRefGoogle Scholar
  18. [18]
    Shaw, R.W. and Harrison, W.A. (1967) “Reformulation of the screened Heine-Abarenkov model potential”, Phys. Rev. 163, 604–611.ADSCrossRefGoogle Scholar
  19. [19]
    Austin, B.J., Heine, V. and Sham, L.J. (1962) “General theory of pseudopotentials”, Phys. Rev. 127, 267–282.ADSCrossRefGoogle Scholar
  20. [20]
    Natapoff, M. (1976) “Calculation of the atomic radius”, J. Phys. Chem. Solids 37, 59–62.ADSCrossRefGoogle Scholar
  21. [21]
    Natapoff, M. (1978) “Pseudopotentials and the radius of the atomic core”, J. Phys. Chem. Solids 39, 1119–1123.ADSCrossRefGoogle Scholar
  22. [22]
    Heine, V. and Abarenkov, I. (1964). “The model potential method”, Phil. Mag. 9, 451–460.ADSCrossRefGoogle Scholar
  23. [23]
    Hamann, D.R. (1989) “Generalized norm conserving pseudopotentials”, Phys. Rev. B 40, 2980–2987.ADSCrossRefGoogle Scholar
  24. [24]
    Ziman, J.M. (1964) “The method of neutral pseudo-atoms in the theory of metals”, Adv. Phys. 13, 89–138.ADSCrossRefGoogle Scholar
  25. [25]
    Dagens, L. (1972) “The ion-electron-ion interaction according to the neutral atom model”, J. Phys. C: Solid State Phys. 5, L213–215.ADSCrossRefGoogle Scholar
  26. Dagens, L. (1972) “A selfconsistent calculation of the neutral atom density according to the neutral atom model”, J. Phys. C : Solid State Phys. 5, 2333–2344.ADSCrossRefGoogle Scholar
  27. Dagens, L. (1973) “Application de la méthode de l’atome neutre au calcul de l’énergie des métaux simples”, J. Physique 34, 879–889.CrossRefGoogle Scholar
  28. [26]
    Norskov, J.K. and Lang, N.D. (1980) “Effective medium theory of chemical binding”, Phys. Rev. B 21, 2131-2136.Puska, M.J., Nieminen, R.N. and Manninen, M. (1981) “Atoms embedded in a electron gas : immersion energy”, Phys. Rev. B 24, 3037-3047.Jacobsen, K.W., Norskov, J.K. and Puska, M. J. (1987) “Interatomic interactions in the effective-medium theory”, Phys. Rev. B35, 7423-7442.ADSCrossRefGoogle Scholar
  29. Puska, M.J., Nieminen, R.N. and Manninen, M. (1981) “Atoms embedded in a electron gas : immersion energy”, Phys. Rev. B 24, 3037–3047.ADSCrossRefGoogle Scholar
  30. Jacobsen, K.W., Norskov, J.K. and Puska, M. J. (1987) “Interatomic interactions in the effective-medium theory”, Phys. Rev. B35, 7423–7442.ADSCrossRefGoogle Scholar
  31. [27]
    Ceperley, D.M. and Adler, B. J. (1980) “Ground state of the electron gas by a stochastic method”, Phys. Rev. Lett. 45, 566–569.ADSCrossRefGoogle Scholar
  32. Perdew, J. and Zunger, A. (1981) “Self-interaction correction to the density-functional approximation for many electron systems”, Phys. Rev. 23, 5048.ADSCrossRefGoogle Scholar
  33. [28]
    Geldart, D.J.W. and Taylor, R. (1970) “Wave-number dependence of the static screening function. I.”, Can. J. Phys. 48, 155–165.ADSCrossRefGoogle Scholar
  34. Geldart, D.J.W. and Taylor, R. (1970) “Wave-number dependence of the static screening function. II.”, Can. J. Phys. 48, 167–181.ADSCrossRefGoogle Scholar
  35. [29]
    Dagens, L. (1971) “Un calcul variationnel de 1’énergie d’échange d’un gaz d’electrons”, J. Physique 32, 719–728.CrossRefGoogle Scholar
  36. [31]
    Brovman, E.G. and Kagan, Y (1970) “Long wave phonons in metals”, Sov. Phys.-JETP 30, 721–727.ADSGoogle Scholar
  37. Brovman, E.G., Kagan, Y. and Kholas, A. (1970) “The compressibility problem and violation of the Cauchy relation”, Sov. Phys.-JETP 30, 883–888.ADSGoogle Scholar
  38. [32]
    Pettifor, D. C. and Ward, M. A. (1984) “An analytic pair potential for simple metals”, Solid State Com. 29, 291–294.CrossRefGoogle Scholar
  39. [33]
    Dagens, L. (1974) “The effect of pressure on the pair potential for liquid sodium”, Phys. Stat. Sol. (b) 62, K109–113.ADSCrossRefGoogle Scholar
  40. [34]
    Rosenfeld, A.M. and Stott, M.J. (1987) “Density dependent potential and the compressibility problem”, J. Phys. F: Metal Phys. 17, 605–627.ADSCrossRefGoogle Scholar
  41. [35]
    Carlsson, A.E. and Ashcroft, N.W. (1983) “Pair potentials from band theory : vacancy formation energies”, Phys. Rev. B 27, 2101-2110.Google Scholar
  42. Carlsson, A.E.(1990) “Beyond pair potentials in transition metals”, Solid State physics 43, Academic, New-York, pp. 1–91.Google Scholar
  43. [36]
    Dagens, L. (1984) “Effective interatomic forces in liquid metals”, Phys. Letters 101A, 283–285.ADSGoogle Scholar
  44. Dagens, L. (1986) “Effective interatomic potentials in strong scattering open shell metals”, J. Phys. Ft Metal Phys. 16, 1705–1724.ADSCrossRefGoogle Scholar
  45. [37]
    Finnis, M.W. and Sinclair, J.E. (1984) “A simple empirical N-body potential for transition Metal”, Phil. Mag. A 50, 45–55.ADSCrossRefGoogle Scholar
  46. [38]
    Daw, M.S. and Baskes, M.I. (1983) “Semi empirical quantum mechanical calculation of hydrogen embrittement in metals”, Phys. Rev. Lett. 50, 1285–1288.ADSCrossRefGoogle Scholar
  47. Daw, M.S. and Baskes, M.I. (1984) “Embedded atom method : derivation and application to defects in metals”, Phys. Rev. B 29, 6443–6453.ADSCrossRefGoogle Scholar
  48. [39]
    Moriarty, J.A. (1977) “Density-functional formulation of the generalized pseudopotential theory”, Phys. Rev. B 16, 2537–2555.ADSCrossRefGoogle Scholar
  49. Moriarty, J.A. (1990) “Multi-ion interatomic potentials in transition metals”, Phys. Rev. B 42, 1609–1628.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • L. Dagens
    • 1
  1. 1.Commissariat à l’ Energie AtomiqueCentre d’Etude de Limeil-ValentonVilleneuve St. GeorgesFrance

Personalised recommendations