The Determination of the Elastic Properties of Inhomogeneous Systems by Computer Simulation

  • J. F. Lutsko
Part of the NATO ASI Series book series (NSSE, volume 205)


The derivation and implementation of various methods for the determination of the elastic constants of inhomogeneous classical systems is reviewed. These methods include the determination of bulk elastic constants by means of zero-temperature (lattice statics) and finite temperature (MD and MC) methods. Special attention is given to technical questions which arise in the derivation of these formulae such as the role of periodic boundary conditions, centre of mass motion and the modification of these formulae under the condition of finite stress.


Elastic Constant Finite Temperature Helmholtz Free Energy Interatomic Potential Dynamical Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Murnaghan, Francis D. (1951) Finite Deformation of an Elastic Solid, John Wiley & Sons, New York.zbMATHGoogle Scholar
  2. 2.
    Ashcroft, Neil W. and Mermin, N. David (1976) Solid State Physics, Saunders College/HRW, West Washington Square.Google Scholar
  3. 3.
    Goldstein, H. (1981) Classical Mechanics, Addison-Wesly, Reading, MA.Google Scholar
  4. 4.
    Ray, J. and Rahman, A. J. (1984) ’Statistical ensembles and molecular dynamics of anisotropic solids’ J. Chem. Phys. 80, 4423–4428.ADSCrossRefGoogle Scholar
  5. 5.
    Barron, T. H. K. and Klein, M. L. (1965) ’Second-order elastic constants of a solid under stress’ Proc. Phys. Soc. 85, 523–532.ADSzbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Reichl, L. E. (1980) A Modern Course in Statistical Mechanics, University of Texas Press, Austin.Google Scholar
  7. 7.
    Daw, M. S. and Baskes, M. I. (1983) ’Semiempirical quantum mechanical calculation of hydrogen embrittlement’ Phys. Rev. Lett. 50, 1285–1288.ADSCrossRefGoogle Scholar
  8. 8.
    Lutsko, J. F. (1989) ’Generalized expressions for the calculation of elastic constants by computer simulation’, J. Appl. Phys. 65, 2991–2997.ADSCrossRefGoogle Scholar
  9. 9.
    Born, M. and Huang, K. (1966) Dynamical Theory of Crystal Lattices, Clarendon, Oxford.Google Scholar
  10. 10.
    Hoover, W. G., Hindmarsh, A. C. and Holian, B. L. (1972) ’Numerical dependence of small crystal thermodynamic properties: I’ J. Chem. Phys. 57, 1980–1985.ADSCrossRefGoogle Scholar
  11. 11.
    Lutsko, J. F. (1988) ’Stress and elastic constants in anisotropic materials’, J. Appl. Phys. 64, 1152–1154.ADSCrossRefGoogle Scholar
  12. 12.
    Beyer, W. H. (1978) CRC Standard Mathematical Tables, CRC, West Palm Beach Fla.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • J. F. Lutsko
    • 1
  1. 1.Dept. CITKULHeverleeBelgium

Personalised recommendations