Advertisement

Microscopic Modeling of Amorphization by Solid State Reactions: Role of Chemical Disorder and Elastic Softening in the Intermetallic Alloy NiZR2

  • C. Massobrio
Chapter
  • 284 Downloads
Part of the NATO ASI Series book series (NSSE, volume 205)

Abstract

We investigate the role played by chemical disorder in the phenomenon of solid state amorphization of the compound NiZr2 by molecular dynamics simulations based on a realistic N-body potential. In addition we study the elastic response of the alloy upon introduction of an increasing number of antisite defects to monitor the possible occurrence of an elastic instabillty triggering the C-A (crystal-to-amorphous) transformation. Chemical disorder is proved to be a driving force of the C-A transformation as shown by the behavior of the structure factor calculated for different values of the long range order parameter S. A large elastic softening is recorded at the threshold value corresponding to amorphization and in this respect we are able to propose an original picture of solid state amorphization processes describing in a unified way the reaction to different forms of defects or impurities destabilizing the system.

Keywords

Elastic Constant Volume Expansion Interatomic Potential Shear Constant Pair Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. J. Meng, P. R. Okamoto, L. J. Thompson, B. J. Kestel and L. E. Rehn , Appl. Phys.Lett. 53,1820 (1988)ADSCrossRefGoogle Scholar
  2. [2]
    R. B. Schwarz and W. L. Johnson , Phis. Rev. Lett. 51,415 (1983)ADSCrossRefGoogle Scholar
  3. [3]
    E. Gaffet , Mat. Science and Eng. A119,185 (1989)CrossRefGoogle Scholar
  4. [4]
    P. R. Okamoto, L. E. Rehn, J. Pearson, R. Bhadra and M. Grimsditch, J. Less-Common Met. 140,231 (1988)CrossRefGoogle Scholar
  5. [5]
    Y. Limoge, A. Rahman, H. Hsieh and S. Yip, J. Non-Cryst.Solids 99,75 (1988)ADSCrossRefGoogle Scholar
  6. [6]
    H. Hsieh and S. Yip, Phys. Rev B39, 7476(1989)ADSGoogle Scholar
  7. [7]
    C. Massobrio, V. Pontikis and G. Martin Phys. Rev. Lett ..62,1142 (1989)ADSCrossRefGoogle Scholar
  8. [8]
    C.Massobrio, V. Pontikis and G. Martin Phys. Rev B41, 10486 (1990)ADSGoogle Scholar
  9. [9]
    H. Bakker, P. I. Loeff and A. W. Weber, Defect Diffusion Forum 66–69, 1169 (1989)Google Scholar
  10. [10]
    H. Mori, H. Fujita, M. Tendo and M. Fujita , Scr. Metall. 18, 783 (1984)CrossRefGoogle Scholar
  11. [11]
    D. E. Luzzi and M. Meshi, Res. Mechanica 21, 207 (1987)Google Scholar
  12. [12]
    M. J. Sabochick and N. Q. Lam, Scripta Met. and Mater. 24, 565 (1990)CrossRefGoogle Scholar
  13. [13]
    M. J. Sabochick and N. Q. Lam to be published in Proceedings of the Mat. Res. Soc. Fall Meeting, Symposium F, Boston, MA, Nov . 26–30 1990Google Scholar
  14. [14]
    J. L. Tallon J. Phys. Chem. Solids 41, 87 (1990)Google Scholar
  15. [15]
    W. J. Meng, J. Faber Jr., P. R. Okamoto, L. E. Rehn, B. J. Kestel and R. L. Hitterman ,J. Appl. Phys. 67, 1312 (1990)ADSCrossRefGoogle Scholar
  16. [16]
    P. R. Okamoto and M. Meshii, “Radiation -Induced Amorphization of Intermetallic Compunds”, Invited Chapter for ASM publication, Science of Advanced Materials, H.Wiedersich and M. Meshii eds.Google Scholar
  17. [17]
    D. Wolf, P. R. Okamoto, S. Yip , J. F. Lutsko and M. Kluge, J. Mater. Res. 5,286 (1990)ADSCrossRefGoogle Scholar
  18. [18]
    C. Massobrio, V. Rosato and F. Willaime to be published in Proceedings of the Mat. Res.Soc. Fall Meeting, Symposium F, Boston, MA, Nov 26–30 1990Google Scholar
  19. [19]
    V. Rosato, M. Guillopé and B. Legrand , Philos. Mag A 59, 321 (1989)ADSGoogle Scholar
  20. [20]
    M. S. Daw and M. I. Baskes, Phys. Rev.B29, 6443 (1984)ADSGoogle Scholar
  21. [21]
    S. Nosé, J. Chem. Phys. 81,511 (1984)ADSCrossRefGoogle Scholar
  22. [22]
    H. C. Andersen J. Chem. Phys. 72,2384 (1980)ADSCrossRefGoogle Scholar
  23. [23]
    C. Massobrio, V. Pontikis and G. Ciccotti , Phys. Rev.B39, 2640 (1989)ADSGoogle Scholar
  24. [24]
    J. H. Rose, J. R. Smith, F. Guinea and J. Ferrante, Phys. Rev. B29, 2963 (1984)ADSGoogle Scholar
  25. [25]
    J. Ray, Comp. Phys. Rep. 8, 109 (1988)ADSCrossRefGoogle Scholar
  26. [26]
    J. Ray and A. Rahman , J. Chem. Phys. 80, 4423 (1984)ADSCrossRefGoogle Scholar
  27. [27]
    M. Parrinello and A. Rahman, J. Appl. Phys. 52, 7182 (1981)ADSCrossRefGoogle Scholar
  28. [28]
    M. Sprik, R. Impey and M. L. Klein , Phys. Rev.B 29, 4368 (1984)ADSGoogle Scholar
  29. [29]
    D. J. Oh and R. A. Johnson, J. Mater. Res. 3,471 (1988)ADSCrossRefGoogle Scholar
  30. [30]
    J. F. Lutsko J. Appl.Phys. 65, 2991(1989)ADSCrossRefGoogle Scholar
  31. [31]
    T. H. K. Barron and M. L. Klein, Proc. Phys. Soc. 85, 523 (1965)MathSciNetADSzbMATHCrossRefGoogle Scholar
  32. [32]
    J. L. Barrat, J. N. Roux, J. P. Hansen and M. L. Klein, Europhysics Lett. 7,707 (1988)ADSCrossRefGoogle Scholar
  33. [33]
    J. Friedel, Phil. Mag. 46, 514 (1955)Google Scholar
  34. [34]
    J. D. Eshelby, Solid State Phys. 3, 79 (1956)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • C. Massobrio
    • 1
  1. 1.Laboratoire des composés non stœchiométriques URA446 CNRSUniversité de ParisOrsay CedexFrance

Personalised recommendations