Advertisement

Atomic Structure and Stability of Quasicrystals

  • Frédéric Lançon
Chapter
Part of the NATO ASI Series book series (NSSE, volume 205)

Abstract

The discovery of quasicrystals has been a revolution in crystallography, since we have realized that symmetries as the pentagon or icosahedron symmetries, forbidden in the periodic lattices, can exist in perfectly ordered structures. Such structures can be described with high dimensional spaces. Recently, thermodynamically stable quasicrystals have been found and thus the interest for these materials has been increased. Basic questions are still opened as how the atoms are actually set in quasi-periodic materials, or what is the origin of their stability: entropic or not? We will describe how we can tackle some of these problems by numerical simulation, using numerical relaxation, molecular dynamics and Monte Carlo methods.

Keywords

Atomic Model Pair Potential Pair Correlation Function Penrose Tiling Quasiperiodic Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    ABRAHAM F.F. (1984) J. Vac. Sci. Technol B2 534–549.Google Scholar
  2. [ 2]
    ABRAHAM F.F. (1986) J. Phys. Chem. 90 203–205.CrossRefGoogle Scholar
  3. [ 3]
    BAK P. (1986) Phys. Rev. Lett. 56 861–864.MathSciNetADSCrossRefGoogle Scholar
  4. [ 4]
    DEBRUIJN N.G. (1981) Math. Proc. A84 27–37 and 39–66.MathSciNetGoogle Scholar
  5. [ 5]
    DUBOIS J.-M., JANOT C. and DE BOISSIEU M. (1988) in “Quasicrystalline Materials” (cf. Ref. [15]) 65–74.Google Scholar
  6. [6]
    DUNEAU M. and KATZ A. (1985) Phys. Rev. Lett. 54 2688–2691.MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    DUNEAU M. and OGUEY C. (1989) J. Phys. France 50 135–145.CrossRefGoogle Scholar
  8. [8]
    ELSER V. (1986) Acta. Cryst. A42 36–43.MathSciNetGoogle Scholar
  9. [9]
    EVANS D.J. and MORRIS G.P. (1983) Chem. Phys. 77 63–66.ADSCrossRefGoogle Scholar
  10. [10]
    FIBONACCI (1180) approximate birth date.Google Scholar
  11. [11]
    FLETCHER R. and REEVES CM. (1964) Comp. J. 7 149–154.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    HENLEY C.L. (1986) Phys. Rev. B 34 797–816.ADSCrossRefGoogle Scholar
  13. [13]
    HENLEY C.L. (1988) J. Phys. A: Math. Gen. 21 1649–1677.MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. [14]
    HOOVER H.G., LADD A.J.C. and MORAN B. (1982) Phys. Rev. Lett. 48 1818–1820.ADSCrossRefGoogle Scholar
  15. [15]
    JANOT C. and DUBOIS J.-M. Eds (1988) ”Quasicrystalline Materials” (Proc. of the ILL/CODEST worshop); World Scientific, Singapore.Google Scholar
  16. [16]
    JOHNSON R.A. (1964) Phys. Rev. 134 A1329–A1336.ADSCrossRefGoogle Scholar
  17. [17]
    KATZ A. and DUNEAU M. (1986) J. Physique 47 181–196.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    LANÇON F., BILLARD L. and CHAMBEROD A. (1984) J. Phys. F 14 579–591.ADSCrossRefGoogle Scholar
  19. [19]
    LANÇON F. and CHAUDHARI P. (1985) Mat. Res. Soc. Symp. Proc. 63 95–100.CrossRefGoogle Scholar
  20. [20]
    LANÇON F., BILLARD L. and CHAUDHARI P. (1986) Europhys. Lett. 2 625–629.ADSCrossRefGoogle Scholar
  21. [21]
    LANÇON F. and BILLARD L. (1988) J. Phys. France 49 249–256.CrossRefGoogle Scholar
  22. [22]
    LANÇON F. and BILLARD L. (1990) J. Phys. France 51 1099–1111.CrossRefGoogle Scholar
  23. [23]
    LEVINE D. and STEINHARDT P.J. (1984) Phys. Rev. Lett. 53 2477–2480.ADSCrossRefGoogle Scholar
  24. [24]
    MACKAY A.L. (1962) Acta Cryst. 15 916–918CrossRefGoogle Scholar
  25. [25]
    MACKAY A.L. (1982) Physica 114A 609–613.MathSciNetADSGoogle Scholar
  26. [26]
    NORDSIECK A. (1962) Math. Comp. 16 22–49.MathSciNetADSzbMATHCrossRefGoogle Scholar
  27. [27]
    PENROSE R. (1974) Bull Inst. Math, and its Appl. 10 266–271.Google Scholar
  28. [28]
    PARLINSKI K., DÉNOYER F. and LAMBERT M. (1990) J. Phys. France 51 1791–1796.CrossRefGoogle Scholar
  29. [29]
    PRESS W.H., FLANNERY B.P., TEUKOLSKY S.A. and VETTERLING W.T. (1986) “Numerical Recipes: The Art of Scientific Computing”, Cambridge University Press.Google Scholar
  30. [30]
    ROTH J., BOHSUNG J., SCILLING R. and TREBIN H.-R. (1988) in “Quasicrystalline Materials” (cf. Ref.[15]) 65–74.Google Scholar
  31. [31]
    ROTH J., SCILLING R. and TREBIN H.-R. (1990) Phys. Rev. B 41 2735–2747.ADSCrossRefGoogle Scholar
  32. [32]
    SHAW J.S., ELSER V. and HENLEY C.L. (1991) Phys. Rev. B 43 3423–3433.ADSGoogle Scholar
  33. [33]
    SHECHTMAN D., BLECH I., GRATIAS D. and CAHN J.W. (1984) Phys. Rev. Lett. 53 1951–1953.ADSCrossRefGoogle Scholar
  34. [34]
    STRANDBURG K.J. (1989) Phys. Rev. B 40 6071–6084.ADSGoogle Scholar
  35. [35]
    STRANDBURG K.J., TANG L.-H. and JARIĆ M.V. (1989) Phys. Rev. Lett. 63 314–317.ADSCrossRefGoogle Scholar
  36. [36]
    TANG L.-H. (1990) Phys. Rev. Lett. 64 2390–2393.ADSCrossRefGoogle Scholar
  37. [37]
    WIDOM M., STRANDBURG K.J. and SWENDSEN R.H. (1987) Phys. Rev. Lett. 58 706–709.ADSCrossRefGoogle Scholar
  38. [38]
    WIDOM M., DENG D.P. and HENLEY C.L. (1989) Phys. Rev. Lett. 63 310–313.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • Frédéric Lançon
    • 1
  1. 1.Département de Recherche Fondamentale sur la Matière CondenséeGrenoble cedexFrance

Personalised recommendations