Advertisement

Molecular Dynamics Simulations at Constant Temperature and Pressure

  • Shuichi Nosé
Chapter
Part of the NATO ASI Series book series (NSSE, volume 205)

Abstract

It is explained how the molecular dynamics methods have been modified to carry out simulations at constant temperature and pressure. The limitations and inconveniences encountered in the ordinary molecular dynamics simulations due to the use of the microcanonical ensemble and the difference between the statistical ensembles are pointed out. We discuss in detail three typical methods ( extended system, constraint, and stochastic methods) developed to resolve the problem. The integration algorithms, the choice of an appropriate value for a mass parameter introduced in the extended system method, and the dynamical properties are also discussed.

Keywords

Canonical Ensemble Extended System Heat Bath Molecular Dynamic Method Total Kinetic Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.R.Ray, H.W.Graben, and J.M.Haile, J.Chem.Phys. 75, 4077 (1981)ADSCrossRefGoogle Scholar
  2. [2]
    J.R.Ray, H.W.Graben, and J.M.Haile, Nuovo Cimento 64B, 191 (1981)ADSGoogle Scholar
  3. [3]
    H.C.Andersen, J.Chem.Phys. 72, 2384 (1980)ADSCrossRefGoogle Scholar
  4. [4]
    J.L.Lebowitz, J.K.Percus, and L.Verlet, Phys.Rev. 153, 250 (1967)ADSCrossRefGoogle Scholar
  5. [5]
    E.M.Pearson, T.Halicioglu, and W.A.Tiller, Phys.Rev. A32, 3030 (1985)ADSGoogle Scholar
  6. [6]
    S.Nosé, Mol.Phys. 52, 255 (1984)ADSCrossRefGoogle Scholar
  7. [7]
    S.Nosé, J.Chem.Phys. 81, 511 (1984)ADSCrossRefGoogle Scholar
  8. [8]
    W.G.Hoover, Phys.Rev. A31, 1695 (1985)ADSGoogle Scholar
  9. [9]
    A.Bulgac and D.Kusnezov, Phys.Rev. A42. 5045 (1990)ADSGoogle Scholar
  10. [10]
    L.V.Woodcock, Chem.Phys.Lett. 10, 257 (1971)ADSCrossRefGoogle Scholar
  11. [11]
    W.G.Hoover, A.J.C.Ladd, and B.Moran, Phys.Rev.Lett. 48 , 1818 (1982)ADSCrossRefGoogle Scholar
  12. [12]
    D.J.Evans, J.Chem.Phys. 78, 3297 (1983)ADSCrossRefGoogle Scholar
  13. [13]
    D.J.Evans, W.G.Hoover, B.H.Failor, B.Moran, and A.J.C.Ladd,Phys.Rev. A28, 1016 (1983)ADSGoogle Scholar
  14. [14]
    T.Schneider and E.Stoll, Phys.Rev. B17, 1302 (1978)ADSGoogle Scholar
  15. [15]
    D.J.Evans and B.L.Holian, J.Chem.Phys. 83, 4069 (1985)ADSCrossRefGoogle Scholar
  16. [16]
    D.J.Evans and G.P.Morriss, Chem.Phys. 77, 63 (1983)ADSCrossRefGoogle Scholar
  17. [17]
    M.Parrinello and A.Rahman, Phys.Rev.Lett. 45, 1196 (1980)ADSCrossRefGoogle Scholar
  18. [18]
    M.Parrinello and A.Rahman, J.Appl.Phys. 52, 7182 (1981)ADSCrossRefGoogle Scholar
  19. [19]
    J.R.Ray and A.Rahman, J.Chem.Phys. 80, 4423 (1984)ADSCrossRefGoogle Scholar
  20. [20]
    S.Nosë and M.L.Klein, Mol.Phys. 50, 1055 (1983)ADSCrossRefGoogle Scholar
  21. [21]
    G.W.Gear, Numerical Initial Value Problems in Ordinary Differential Equations (Prentice Hall) 1971, chap.9.Google Scholar
  22. [22]
    H.C.Andersen, J.Comput.Phys. 52, 24 (1983)ADSzbMATHCrossRefGoogle Scholar
  23. [23]
    J.P.Ryckaert and G.Ciccotti, J.Chem.Phys. 78, 7368 (1983)ADSCrossRefGoogle Scholar
  24. [24]
    B.L.Holian, A.J.De Groot, W.G.Hoover, and C.G.Hoover, Phys.Rev. A41, 4552 (1990)ADSGoogle Scholar
  25. [25]
    D.J.Evans and G.P.Morriss, Chem.Phys. 87, 451 (1984)ADSCrossRefGoogle Scholar
  26. [26]
    H.Tanaka, K.Nakanishi, and N.Watanabe, J.Chem.Phys. 78, 2626 (1983)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • Shuichi Nosé
    • 1
  1. 1.Department of Physics, Faculty of Science and TechnologyKeio UniversityKohoku-ku Yokohama 223Japan

Personalised recommendations