Advertisement

Structural Organization in Self-Assembled Monolayers

  • Joseph Hautman
  • Michael L. Klein
Chapter
  • 289 Downloads
Part of the NATO ASI Series book series (NSSE, volume 205)

Abstract

Computer simulation molecular dynamics calculations have been used to investigate the behavior of monolayers of long-chain molecules tethered to various substrates. Specifically, we are interested in quasi-two-dimensional overlayers of long-chain thiols that can be prepared by self-assembly from solution on to well-characterized substrates, such as gold or silver. The eventual aim is to understand the extent to which the underlying substrate can influence the chain packing and the ways in which different polar terminal groups can alter the physical properties of the monolayer. The motivation for this study is that it complements experimental programs currently underway to study organic thin films.

Keywords

Contact Angle Molecular Dynamic Calculation Mono Layer Organic Thin Film Helium Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Inaba, H. Chibara, S. M. Clarke and R. K. Thomas, Mol Phys., 1991, 72, 109.ADSCrossRefGoogle Scholar
  2. 2.
    Y. P Joshi, D. J. Tildesley, J. S. Ayres and R. K. Thomas, Mol. Phys., 1988, 65, 991.ADSCrossRefGoogle Scholar
  3. 3.
    M. Moller and M. L. Klein, J. Chem. Phys., 1989, 90, 196.CrossRefGoogle Scholar
  4. 4.
    J. Z. Larese, Q. M. Zhang, L. Passell, J. M. Hasting, J. R. Dennison and H. Taub, Phys. Rev. B., 1989, 40, 4271.ADSCrossRefGoogle Scholar
  5. 5.
    A. Alavi, Mol. Phys., 1990, 71, 1173.ADSCrossRefGoogle Scholar
  6. 6.
    See also, for example, J. Chem. Soc. Faraday Discuss. 80, 1985, and papers therein.Google Scholar
  7. 7.
    J. Z. Larese, L. Passell, A. D. Heidemann, D. Richter and J. P. Wickstead, Phys. Rev. Lett., 1988, 61, 432.ADSCrossRefGoogle Scholar
  8. 8.
    P. Rowntree, G. Scoles and J. Xu, J. Chem. Phys., 1990, 92, 3853.ADSCrossRefGoogle Scholar
  9. 9.
    M. P. Allen and D. J. Tildesley, “Computer Simulation of Liquids,” Clarendon, Oxford, 1987.zbMATHGoogle Scholar
  10. 10.
    V. R. Behethanabotla and W. A. Steele, J. Chem. Phys., 1989, 91, 4346.ADSCrossRefGoogle Scholar
  11. 11.
    S. Nosé and M. L. Klein, Phys. Rev. Lett., 1984, 53, 818ADSCrossRefGoogle Scholar
  12. 11a.
    B. H. Grier, J. Passell, J. Eckert, H. Patterson, D. Richter and R. J. Rollefson, Phys. Rev. Lett.., 1984, 53, 814.ADSCrossRefGoogle Scholar
  13. 12.
    A. Cheng and W. A. Steele, J. Chem. Phys., 1990, 92, 3859; ibid 3867.ADSGoogle Scholar
  14. 13.
    J. C. Ruiz-Suarez, M. L. Klein, M. A. Moller, P. A. Rowntree, G. Scoles and J. Xu, Phys. Rev. Lett., 1988, 61, 710.ADSCrossRefGoogle Scholar
  15. 14.
    S. Leggetter and D. J. Tildesley, Mol. Phys., 1989, 68, 519.ADSCrossRefGoogle Scholar
  16. 15.
    G. Cardini, J. Bareman and M. L. Klein, Chem. Phys. Lett., 1988, 145, 493ADSCrossRefGoogle Scholar
  17. 15a.
    J. P. Bareman, G. Cardini and M. L. Klein, in Atomic Scale Calculations in Materials Science, Eds. J. Tersoff, D. Vanderbilt and V. Vitek, MRS Symposium Series, 1989, 141, 411.Google Scholar
  18. 16.
    J. Harris and S.A. Rice, J. Chem. Phys., 1988, 89, 5898.ADSCrossRefGoogle Scholar
  19. 17.
    M. Moller, D. J. Tildesley and N. Quirke, 1990, J. Chem. Phys.Google Scholar
  20. 18.
    J. Hautman and M. L. Klein, J. Chem. Phys., 1989, 91, 4994; J. Chem. Phys., 1990 93 7483.ADSCrossRefGoogle Scholar
  21. 19.
    A. Ulman, J. E. Eilers, N. Tillman, Langmuir, 1989, 5, 1147.CrossRefGoogle Scholar
  22. 20.
    C. D. Bain, E. B.Troughton, Y.-T. Tao, J. Evall, G. M. Whitesides and R. G. Nuzzo, J. Am. Chem. Soc, 1989, 111, 321.CrossRefGoogle Scholar
  23. 21.
    J. D. Swalen, D. L. Allara, J. D. Andrade, E.A. Chandross, S. Garoff, J. Israelachvili, T. J. McCarthy, R. Murray, R. F. Pease, J. F. Rabolt, K. J. Wynne and H. Yu, Langmuir, 1987, 3, 932.CrossRefGoogle Scholar
  24. 22.
    J. Sagiv, J. Am. Chem. Soc, 1980, 102, 92.CrossRefGoogle Scholar
  25. 23.
    R. G. Nuzzo and D. L. Allara, J. Am. Chem. Soc, 1983, 105, 4481.CrossRefGoogle Scholar
  26. 24.
    C. D. Bain and G. M. Whitesides, Angew. Chem. Int. Ed. Engl., 1989, 28, 506.CrossRefGoogle Scholar
  27. 25.
    A. Ulman, 1990, Angew. Chem. Int. Ed. Engl. Adv. Mat.Google Scholar
  28. 26.
    C. Pale-Grosdemange, E. S. Simon and G. M. Whitesides, 1990, preprint; for related studies on Langmuir-Blodgett systems, see S. M. Amador, J. M. Pachence, J. P. McCauley, Jr., A. B. Smith, P. L. Dutton, R. Fischetti and J. K. Blasie, Proc. Mat. Res. Soc, 1989, 177, 393.Google Scholar
  29. 27.
    S. R. Wasserman, H. Biebuyck and G. M. Whitesides, J. Mater. Res., 1989, 4, 886.ADSCrossRefGoogle Scholar
  30. 28.
    L. S. Strong and G. M. Whitesides, Langmuir, 1988, 4, 546.CrossRefGoogle Scholar
  31. 29.
    N. Tillman, A. Ulman and J. F. Elman, Langmuir, 1989, 5, 1020.CrossRefGoogle Scholar
  32. 30.
    A. Ulman, C. S. Willand, W. Kohler, D. R. Robello, D. J. Williams and L. Handley, J. Am. Chem. Soc, in press.Google Scholar
  33. 31.
    S. M. Stole and M. D. Porter, Langmuir, 1990, 6, 1199.CrossRefGoogle Scholar
  34. 32.
    R. G. Nuzzo, E. M. Korenic and L. H. Dubois, J. Chem. Phys., 1990, 93, 767.ADSCrossRefGoogle Scholar
  35. 33.
    N. Balachander, C. N. Sukenik, Tetrahedron Lett., 1989, 29, 5593.CrossRefGoogle Scholar
  36. 34.
    S. D. Evans, R. Sharma and A. Ulman, Langmuir, 1991, 7, 156.CrossRefGoogle Scholar
  37. 35.
    S. D. Evans and A. Ulman, Chem. Phys. Lett., 1990, 170, 462.ADSCrossRefGoogle Scholar
  38. 36.
    R. G. Nuzzo, L. H. Dubois and D. L. Allara, J. Am. Chem. Soc., 1990, 112, 558CrossRefGoogle Scholar
  39. 36a.
    L. H. Dubois, B. R. Zegarski and R. G. Nuzzo, J. Am. Chem. Soc, 1990, 112, 570.CrossRefGoogle Scholar
  40. 37.
    P. E. Laibinis, J. J. Hickman, M. S. Wrighton, G. M. Whitesides, Science, 1989, 245, 845.ADSCrossRefGoogle Scholar
  41. 38.
    N. Tillman, A. Ulman and T. L. Penner, Langmuir, 1989, 5, 101.CrossRefGoogle Scholar
  42. 39.
    N. Tillman, A. Ulman, J. S. Schildkraut and T. L. Penner, J. Am. Chem. Soc, 1988, 110, 6136.CrossRefGoogle Scholar
  43. 40.
    I. M. Tidswell, B. M. Ocko, P. S. Pershan, S. R. Wasserman, G. M. Whitesides and J. D. Axe, Phys. Rev. B, 1990, 41, 1111.ADSCrossRefGoogle Scholar
  44. 41.
    S. R. Wasserman, Y. T. Tao and G. M. Whitesides, Langmuir, 1989, 5, 1074.CrossRefGoogle Scholar
  45. 42.
    G. M. Whitesides, P. E. Laibinis, Langmuir, 1990, 6, 87.CrossRefGoogle Scholar
  46. 43.
    M. D. Porter, T. B. Bright, D. L. Allara and C. E. D. Chidsey, J. Am. Chem. Soc, 1987, 109, 3559.CrossRefGoogle Scholar
  47. 44.
    R. G. Nuzzo, F. A. Fusco, and D. L. Allara, J. Am. Chem. Soc, 1987, 109, 2358CrossRefGoogle Scholar
  48. 44a.
    L. H. Dubois, B. R. Zegarski and R. G. Nuzzo, Proc. NatAcad. Sci., 1987, 84,4739ADSCrossRefGoogle Scholar
  49. 44b.
    R. G. Nuzzo, B. R. Zegarski and L. H. Dubois, J. Am. Chem. Soc, 1987, 109, 733; 1988, 110, 6560; 1988, 110, 3665.CrossRefGoogle Scholar
  50. 45.
    E. B.Troughton, C. D. Bain, G. M. Whitesides, R. G. Nuzzo, D. L. Allara and M. D. Porter, Langmuir, 1988, 4, 365.CrossRefGoogle Scholar
  51. 46.
    C. D. Bain and G. M. Whitesides, J. Am. Chem. Soc, 1988, 110, 6560CrossRefGoogle Scholar
  52. 46a.
    C. D. Bain and G. M. Whitesides, Science, 1988, 240, 62ADSCrossRefGoogle Scholar
  53. 46b.
    C. D. Bain, H. A. Biebuyck and G. M. Whitesides, Langmuir, 1989, 5, 723CrossRefGoogle Scholar
  54. 46c.
    C. D. Bain, J. Evall and G. M. Whitesides, J. Am. Chem. Soc, 1989, 111, 7155.CrossRefGoogle Scholar
  55. 47.
    C. E. D. Chidsey, G.-Y. Liu, P. Rowntree, and G. Scoles, J. Chem. Phys., 1989, 91, 4421, and private communication.ADSCrossRefGoogle Scholar
  56. 48.
    S. H. Chen and C. W. Frank, Langmuir, 1989, 5, 978.CrossRefGoogle Scholar
  57. 49.
    S. R. Holmes-Farley and G. M. Whitesides, Langmuir, 1987, 3, 62.CrossRefGoogle Scholar
  58. 50.
    J.-P. Ryckaert and M. L. Klein, J. Chem. Phys., 1986, 85, 1613ADSCrossRefGoogle Scholar
  59. 50a.
    J.-P. Ryckaert, M. L. Klein, and I. R. McDonald, Phys. Rev. Lett., 1987, 58, 698ADSCrossRefGoogle Scholar
  60. 50b.
    J.-P. Ryckaert, I. R. McDonald, and M. L. Klein, Mol. Phys., 1989, 67, 957.ADSCrossRefGoogle Scholar
  61. 51.
    J. P. Bareman, G. Cardini and M. L. Klein, Phys. Rev. Lett., 1988, 60, 2152...ADSCrossRefGoogle Scholar
  62. 52.
    B. Lin, M. C. Shih and T. M. Bohanon, Phys. Rev. Lett., 1990, 65, 191ADSCrossRefGoogle Scholar
  63. 53.
    J. V. Selinger and D. R. Nelson, Phys. Rev. A, 1989, 39, 3135.ADSCrossRefGoogle Scholar
  64. 54.
    A. Ulman, private communication; Y. Shnidman, J. E. Eilers, S. D. Evans and A. Ulman, to be published.Google Scholar
  65. 55.
    J.-P. Ryckaert and A. Bellemans, J. Chem. Soc. Faraday Discuss., 1978, 66, 95.CrossRefGoogle Scholar
  66. 56.
    P. van der Ploeg and H. J. C. Berendsen, J. Chem. Phys., 1982, 76, 3271.ADSCrossRefGoogle Scholar
  67. 57.
    W. L. Jorgensen, J. Phys. Chem., 1986, 90, 1277, 6379.Google Scholar
  68. 58.
    W. L. Jorgensen and J. Tirado-Rives, J. Am. Chem. Soc, 1988, 110, 1657.CrossRefGoogle Scholar
  69. 59.
    J. Hautman and M. L. Klein, Molecular Physics, 1991, to be published.Google Scholar
  70. 60.
    S. Nosé, Mol. Phys., 1984, 52, 255; J. Chem. Phys., 1984, 81, 511.ADSCrossRefGoogle Scholar
  71. 61.
    J. P. Bareman and M. L. Klein, J. Phys. Chem., 1990, 94, 5202.CrossRefGoogle Scholar
  72. 62.
    S. Toxvaerd, 1990, J. Chem. Phys. 93, 4290.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • Joseph Hautman
    • 1
  • Michael L. Klein
    • 1
  1. 1.Department of ChemistryUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations