Advertisement

Dissipative and Fluctuating Hydrodynamic Interactions between Suspended Solid Particles via Lattice-Gas Cellular Automata

  • Anthony J. C. Ladd
Chapter
Part of the NATO ASI Series book series (NSSE, volume 205)

Abstract

Lattice-gas models are simplified molecular models in which particles with a discrete set of velocities move from one node to another of a space-filling lattice, undergoing collisions with other particles occupying the same node. Macroscopic fluid dynamical behavior can be obtained by averaging over space and time. Moreover, the inherent noise in the lattice gas can be used to simulate the thermal fluctuations in a fluid which give rise to Brownian motion. A moving solid body interacts with the lattice gas via additional microrules, applied to nodes of the lattice gas coincident with the surface of the body, which represent collisions between the lattice-gas particles and the solid. These microrules are local to each node; on average they set up a hydrodynamic stick boundary condition so that the fluid next to the solid particle is moving with the local velocity of the particle surface. In this paper I will describe how lattice gases can be used to model the dissipative and fluctuating hydrodynamic forces between solid particles in suspension.

Keywords

Boundary Node Hydrodynamic Interaction Lattice Boltzmann Equation Rule Table Suspended Solid Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Happel and H. Brenner, Low-Reynolds Number Hydrodynamics,(Martinus Nijhoff, Dordrecht, 1986).zbMATHGoogle Scholar
  2. [2]
    A. Einstein, Investigations on the Theory of the Brownian Movement,(Dover Publications, New York, 1956).zbMATHGoogle Scholar
  3. [3]
    D.L. Ermak and J.A. McCammon, J. Chem. Phys. 69, 1352 (1978).ADSCrossRefGoogle Scholar
  4. [4]
    P. Mazur and W. Van Saarloos, Physica A 115, 21 (1982).MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    C.W.J. Beenakker and P. Mazur, Physica A 126, 349 (1984).MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    C.W.J. Beenakker, Physica A 128, 48 (1984).MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    R.J. Phillips, J.F. Brady and G. Bossis, Phys. Fluids 31, 3462 (1988).ADSCrossRefGoogle Scholar
  8. [8]
    A.J.C. Ladd, J. Chem. Phys. 93, 3484 (1990).ADSCrossRefGoogle Scholar
  9. [9]
    G. Bossis and J.F. Brady, J. Chem. Phys. 91, 1866 (1989).ADSCrossRefGoogle Scholar
  10. [10]
    R.J.A. Tough, P.N. Pusey, H.N.W. Lekkerkerker and C. Van Den Broek,Mol Phys. 59, 595 (1986).ADSCrossRefGoogle Scholar
  11. [11]
    B.J. Alder and T.E. Wainwright, Phys. Rev. Lett., 18, 988, (1967).ADSCrossRefGoogle Scholar
  12. [12]
    D.A. Weitz, D.J. Pine, P.N. Pusey and R.J.A. Tough, Phys. Rev. Lett. 63, 1747 (1989).ADSCrossRefGoogle Scholar
  13. [13]
    G.A. Bird, Molecular Gas Dynamics, Oxford University Press (1976).Google Scholar
  14. [14]
    R.W. Hockney and J.W. Eastwood, Computer Simulation Using Particles,Adam Hilger (1988).zbMATHCrossRefGoogle Scholar
  15. [15]
    U. Frisch, B. Hasslacher, and Y. Pomeau, Phys. Rev. Lett. 56, 1505 (1986).ADSCrossRefGoogle Scholar
  16. [16]
    A.J.C. Ladd, M.E. Colvin and D. Frenkel, Phys. Rev. Lett. 60, 975 (1988).ADSCrossRefGoogle Scholar
  17. [17]
    A.J.C. Ladd and D. Frenkel, Cellular Automata and Modeling of Complex Physical Systems, Edited by P. Manneville, N. Boccara, G.Y. Vichniac, and R. Bidaux,(Springer-Verlag, Berlin, 1989).Google Scholar
  18. [18]
    A.J.C. Ladd and D. Frenkel, Phys. Fluids. A 2, 1921 (1990).ADSCrossRefGoogle Scholar
  19. [19]
    M.A. van der Hoef, D. Frenkel and A.J.C. Ladd, (unpublished work, 1990).Google Scholar
  20. [20]
    J. Hardy, O. de Pazzis, and Y. Pomeau, Phys. Rev., A 13, 1949 (1976).ADSCrossRefGoogle Scholar
  21. [21]
    U. Frisch, D. d’Humières, B. Hasslacher, P. Lallemand, Y. Pomeau and J-P. Rivet,Complex Systems 1, 649 (1987).MathSciNetzbMATHGoogle Scholar
  22. [22]
    D. d’Humières, Y.H. Qian and P. Lallemand, Discrete Kinetic Theory,Lattice Gas Dynamics and Foundations of Hydrodynamics, Edited by R. Monaco,(World Scientific Publishing, Singapore, 1989).Google Scholar
  23. [23]
    G. Zanetti, Phys. Rev. A 40,1539 (1989).ADSCrossRefGoogle Scholar
  24. [24]
    S. Chapman and T.G. Cowling, The Mathematical Theory of Non-Uniform Gases,(Cambridge University Press, 1960).zbMATHGoogle Scholar
  25. [25]
    M. Hénon, Complex Systems 1, 763 (1987).MathSciNetzbMATHGoogle Scholar
  26. [26]
    M. Hénon, Discrete Kinetic Theory, Lattice Gas Dynamics and Foundations of Hydrodynamics, Edited by R. Monaco, (World Scientific Publishing, Singapore, 1989).Google Scholar
  27. [27]
    J.A. Somers and P.C. Rem, Cellular Automata and Modeling of Complex Physical Systems, Edited by P. Manneville, N. Boccara, G.Y. Vichniac, and R. Bidaux,(Springer-Verlag, Berlin, 1989).Google Scholar
  28. [28]
    M. Hénon, Complex Systems 1, 475 (1987).MathSciNetzbMATHGoogle Scholar
  29. [29]
    A.J. Masters, Private Communication (1990).Google Scholar
  30. [30]
    P. Mazur and D. Bedeaux, Physica 76, 235 (1974).MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    R. Cornubert, D. d’Humières and C.D. Levermore, Physica D 47, 241 (1991).MathSciNetADSzbMATHCrossRefGoogle Scholar
  32. [32]
    R. Cornubert, Private Communication (1990).Google Scholar
  33. [33]
    A.J.C. Ladd, J. Chem. Phys. 88, 5051 (1988).ADSCrossRefGoogle Scholar
  34. [34]
    G.R. McNamara and G. Zanetti, Phys. Rev. Lett. 61, 2332 (1988).ADSCrossRefGoogle Scholar
  35. [35]
    J-P. Rivet, Complex Systems 1, 839 (1987).MathSciNetzbMATHGoogle Scholar
  36. [36]
    M.H. Ernst and J.W. Dufty, J. Stat. Phys. 58, 57 (1990).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • Anthony J. C. Ladd
    • 1
  1. 1.Lawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations