Molecular Simulations of Non-Equilibrium Large Scale Phenomena in Fluids

  • M. Mareschal
Part of the NATO ASI Series book series (NSSE, volume 205)


In this article, we discuss the possibilities offered by microscopic simulations to examine the validity of the Navier Stokes equations of hydrodynamics for small space and time scales and when the constraints imposed on the model fluids are large. We discuss the dilute gas case in order to illustrate the deficiency of an analytical approach. We then focus on direct observation of dense fluids under constraints by molecular dynamics. The ability to simulate the Rayleigh-Bénard instability with 5000 hard disks, with a remarkable agreement with macroscopic behavior, provides a direct strong evidence that the hydrodynamical scale is very near the atomic scale. Possible extension of direct non-equilibrium simulations are discussed.


Boltzmann Equation Rayleigh Number Hard Sphere Knudsen Number Transport Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    also at Universié Libre de Bruxelles, Service de Chimie-Physique, CP 231, Campus Plaine, B1050 Brussels, BelgiumGoogle Scholar
  2. 2.
    L. D. Landau, E. M. Lifshitz, Fluid Mechanics, Pergamon Press, London (1958)Google Scholar
  3. 3.
    R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics. J Wiley- Interscience (New York, 1975)zbMATHGoogle Scholar
  4. 4.
    G. E. Ulhenbeck and G. W. Ford, Lectures in Statistical Mechanics, American Mathematical Society, Providence (1963)Google Scholar
  5. 5.
    J. P. Boon, S. Yip, Molecular Hydrodynamics. Mac Graw-Hill, New York (1980)Google Scholar
  6. 6.
    P. Résibois, M. Deleener, Classical Kinetic Theory of fluids. J. Wiley- Inter science, New York (1977)Google Scholar
  7. 7.
    W. G. Hoover and W. T. Ashurst, in Theoretical Chemistry, vol 1: Advances and perspectives (Academic Press, New York, 1975)Google Scholar
  8. 8.
    A. Tenenbaum, G. Ciccotti, R. Gallico, Phys. Rev. A25, 2778 (1982)ADSGoogle Scholar
  9. 9.
    S. R. de Groot, P. Mazur. Non-equilibrium Thermodynamics. North-Holland Publishing, Amsterdam (1962)Google Scholar
  10. 10.
    C. Kittel, Phys. Today, 5, 93 ( May1988)CrossRefGoogle Scholar
  11. 11.
    S. Harris, An Introduction to the Theory of the Boltzmann Equation. Holt, Rinehart and Winston, New York (1971).Google Scholar
  12. 12.
    S. Chapman, T. G. Cowling, The Mathematical Theory of Non-Uniform Gases. Cambridge University Press, Cambridge (1960)zbMATHGoogle Scholar
  13. 13.
    see J. D. Foch and G. W. Ford in Studies in Statistical Mechanics, volume V, editors J. de Boer and G. E. Uhlenbeck, North Holland, Amsterdam (1970)Google Scholar
  14. 14.
    P. J. Clause and M. Mareschal, Phys. Rev. A38, 4241 (1988)ADSGoogle Scholar
  15. 15.
    M. P. Allen, D. Tildesley, Computer Simulation of Liquids. Clarendon, Oxford (1987);zbMATHGoogle Scholar
  16. 15a.
    J. P. Hansen, I. R. Mae Donald, Theory of Simple Liquids. Academic, New York (1976); Molecular-Dynamics Simulation of Statistical-Mechanical Systems, edited by G. ClCCOTTl and W. G. HOOVER, North Holland, Amsterdam (1987).Google Scholar
  17. 16.
    see for instance D. Massignon, Mecanique Statistique des Fluides. Dunod, Paris (1957)Google Scholar
  18. 17.
    W. E. Alley and B. J. Alder, Phys. Rev. A27, 3158 (1983)ADSGoogle Scholar
  19. 17a.
    W. E. Alley, B. J. Alder, S. Yip, Phys. Rev. A27,3174 (1983)ADSGoogle Scholar
  20. 18.
    M. Mareschal and M. Malek Mansour, to be publishedGoogle Scholar
  21. 19.
    S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Clarendon Press, Oxford (1961).zbMATHGoogle Scholar
  22. 20.
    M. Mareschal and E. Kestemont, Nature 329, 427 (1987ADSCrossRefGoogle Scholar
  23. 20a.
    M. Mareschal and E. Kestemont, ,J. Stat. Phys. 48, 1187(1987)ADSCrossRefGoogle Scholar
  24. 21.
    M. Mareschal, M. Malek-Mansour, A. Puhl and E. Kestemont, Phys. Rev. Lett.,61, 2550 (1988)ADSCrossRefGoogle Scholar
  25. 22.
    D. C. Rapaport, Phys. Rev. Lett. 60, 2480 (1988)ADSCrossRefGoogle Scholar
  26. 23.
    D. C. Rapaport, to be published.Google Scholar
  27. 24.
    G. A. Bird, Molecular Gas Dynamics. Clarendon Press, Oxford (1976)Google Scholar
  28. 25.
    R. Monaco, (editor) Discrete Kinetic Theory, Lattice Gas Dynamics and the Foundations of Hydrodynamics. World Scientific, Singapore (1989).zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • M. Mareschal
    • 1
  1. 1.S.R.M.P., CE SaclayGif-sur-Yvette cedexFrance

Personalised recommendations