Lecture Notes on: Free-Energy Calculations

  • D. Frenkel
Part of the NATO ASI Series book series (NSSE, volume 205)


Techniques to compute absolute free energies of classical many-body systems are discussed with special emphasis on those techniques that can be used to map the phase diagram of solids and liquids. Recent technical advances in the study of multi-component systems and systems consisting of flexible molecules are emphasized.


Free Energy Partition Function Helmholtz Free Energy Potential Energy Function Chain Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    O.G. Mouritsen, Computer Studies of Phase Transitions and Critical Phenomena, Springer, Berlin, 1984.CrossRefGoogle Scholar
  2. [2]
    K. Binder, Applications of the Monte Carlo Method in Statistical Physics, Springer, Berlin, 1984.zbMATHCrossRefGoogle Scholar
  3. [3]
    W. G. Hoover and F. H. Ree, J. Chem. Phys. 47:4873 (1967).ADSCrossRefGoogle Scholar
  4. [4]
    J. P. Hansen and I. R. McDonald, Theory of Simple Liquids,2nd edition, Academic Press, London, 1986.Google Scholar
  5. [5]
    D. Frenkel and A. J. C. Ladd, J. Chem. Phys. 81:3188 (1984).ADSCrossRefGoogle Scholar
  6. [6]
    D. Frenkel and B. M. Mulder, Mol. Phys. 55:1171 (1985).ADSCrossRefGoogle Scholar
  7. [7]
    A. Stroobants, H. N. W. Lekkerkerker and D. Frenkel, Phys. Rev. A36:2929 (1987).ADSGoogle Scholar
  8. [8]
    D. Frenkel, H. N. W. Lekkerkerker and A. Stroobants, Nature 332:822 (1988).ADSCrossRefGoogle Scholar
  9. [9]
    E.J.Meijer, D.Frenkel, R.A.LeSar and A.J.C.Ladd, J. Chem. Phys. 92:7570(1990).ADSCrossRefGoogle Scholar
  10. [10]
    W.G.T.Kranendonk and D.Frenkel, Mol. Phys. 72:679(1991)ADSCrossRefGoogle Scholar
  11. [11]
    W.G.T.Kranendonk and D.Frenkel, Mol. Phys. 72:699(1991)ADSCrossRefGoogle Scholar
  12. [12]
    B. Widom, J. Chem. Phys. 39:2808 (1963).ADSCrossRefGoogle Scholar
  13. [13]
    K .S. Shing, Chem. Phys. Lett. 119:149(1985)ADSCrossRefGoogle Scholar
  14. [13a]
    K .S. Shing,J. Chem. Phys. 85:4633 (1986).ADSCrossRefGoogle Scholar
  15. [14]
    K .S. Shing and S. T. Chung, J. Phys. Chem. 91:1674 (1987).CrossRefGoogle Scholar
  16. [15]
    P. Sindzingre, G. Ciccotti, C. Massobrio and D. Frenkel, Chem. Phys. Lett. 136:35 (1987).ADSCrossRefGoogle Scholar
  17. [16]
    D. Frenkel in: Molecular Dynamics Simulations of Statistical Mechanical Systems, Proceedings of the 97th International School of Physics ‘Enrico Fermi’, G. Ciccotti and W. G. Hoover, editors. North-Holland, Amsterdam, 1986, p.151.Google Scholar
  18. [17]
    J. L. Lebowitz, J. K. Percus and L. Verlet, Phys. Rev. 153:250 (1967).ADSCrossRefGoogle Scholar
  19. [18]
    P. Sindzingre, C. Massobrio, G. Ciccotti and D. Frenkel, Chemical Physics 129:213(1989)ADSCrossRefGoogle Scholar
  20. [19]
    J.I.Siepmann, Mol.Phys.70:1145(1990)ADSCrossRefGoogle Scholar
  21. [20]
    M.N.Rosenbluth and A.W.Rosenbluth, J.Chem. Phys. 23:356(1955)CrossRefGoogle Scholar
  22. [21]
    S.K.Kumar and A.Z.Panagiotopoulos, preprint (1991).Google Scholar
  23. [22]
    D.Frenkel and B.Smit, to be published.Google Scholar
  24. [23]
    D.Frenkel, J.Phys. Condensed Matter 2(SA):265(1990)ADSGoogle Scholar
  25. [24]
    G.A.C.M.Mooij and D.Frenkel, Mol. Phys. (in press).Google Scholar
  26. [25]
    J.I.Siepmann and D.Frenkel, submitted for publicationGoogle Scholar
  27. [26]
    K. S. Shing and K. E. Gubbins, Mol. Phys. 46, 1109 (1982).ADSCrossRefGoogle Scholar
  28. [27]
    K. S. Shing and K. E. Gubbins, Mol. Phys. 49, 1121 (1983).ADSCrossRefGoogle Scholar
  29. [28]
    C. H. Bennett, J. Comput. Phys. 22, 245 (1976).ADSCrossRefGoogle Scholar
  30. [29]
    G. M. Torrie and J. P. Valleau, J. Comp. Phys. 23:187 (1977)ADSCrossRefGoogle Scholar
  31. [30]
    D.R.Squire and W.G.Hoover, J.Chem.Phys. 50:701(1969)ADSCrossRefGoogle Scholar
  32. [31] Leeuw and M.J.Gillan, J. Phys. C15:5161(1982)ADSGoogle Scholar
  33. [32].
    . G.Jacucci and M.Ronchetti, Solid State Commun.33:35(1980)ADSCrossRefGoogle Scholar
  34. [33]
    W. W. Wood, J. Chem. Phys. 48:415 (1968).ADSCrossRefGoogle Scholar
  35. [34]
    I. R. McDonald, Mol. Phys. 23:41 (1972).ADSCrossRefGoogle Scholar
  36. [35]
    Actually, there is no need to assume a real piston. The systems with volume V and V0-V may both be isolated systems subject to their individual (periodic) boundary conditions. The only constraint that we impose is that the sum of the volumes of the two systems equals V0.Google Scholar
  37. [36]
    R. Eppenga and D. Frenkel, Mol. Phys. 52:1303 (1984).ADSCrossRefGoogle Scholar
  38. [37]
    G. E. Norman and V. S. Filinov, High Temp. Res. USSR 7:216 (1969).Google Scholar
  39. [38]
    D. J. Adams, Mol. Phys. 28:1241 (1974).ADSCrossRefGoogle Scholar
  40. [39]
    D. J. Adams, Mol. Phys. 29:307 (1975).ADSCrossRefGoogle Scholar
  41. [40]
    D. J. Adams, Mol. Phys. 32:647 (1976).ADSCrossRefGoogle Scholar
  42. [41]
    D. J. Adams, Mol. Phys. 37:211 (1979).ADSCrossRefGoogle Scholar
  43. [42]
    L. A. Rowley, D. Nicholson and N. G. Parsonage, J. Comp. Phys. 17:401 (1975).ADSCrossRefGoogle Scholar
  44. [43]
    J. Yao, R. A. Greenkorn and K. C. Chao, Mol. Phys. 46:587 (1982).ADSCrossRefGoogle Scholar
  45. [44]
    M. Mezei, Mol. Phys. 40:901 (1980).ADSCrossRefGoogle Scholar
  46. [45]
    J. P. Valleau and K. L. Cohen, J. Chem. Phys. 72:3935 (1980).Google Scholar
  47. [46]
    W. van Meegen and I. Snook, J. Chem. Phys. 73:4656 (1980).ADSCrossRefGoogle Scholar
  48. [47]
    M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Clarendon, Oxford, 1987.zbMATHGoogle Scholar
  49. [48]
    T.Çağin and B.M. Pettitt, Mol. Phys. 72:169(1991).ADSCrossRefGoogle Scholar
  50. [49]
    A. Z. Panagiotopoulos, Mol. Phys. 61:813 (1987).ADSCrossRefGoogle Scholar
  51. [50]
    A. Z. Panagiotopoulos, N. Quirke, M. Stapleton and D. J. Tildesley, Mol. Phys. 63:527 (1988).ADSCrossRefGoogle Scholar
  52. [51]
    A. Z. Panagiotopoulos, Mol. Phys. 62:701 (1987).ADSCrossRefGoogle Scholar
  53. [52]
    B.Smit, Ph. de Smedt and D.Frenkel, Mol. Phys. 68:931(1989).ADSCrossRefGoogle Scholar
  54. [53]
    D.A.Kofke and E.D.Glandt, Mol. Phys. 64:1105(1988).ADSCrossRefGoogle Scholar
  55. [54]
    M.R.Stapleton, D.J.Tildesley and N.Quirke, J.Chem. Phys. 92:4456(1990).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • D. Frenkel
    • 1
  1. 1.FOM Institute for Atomic and Molecular PhysicsAmsterdamThe Netherlands

Personalised recommendations