Molecular Dynamics Simulations of Nonequilibrium Phenomena and Rare Dynamical Events

  • G. Ciccotti
Part of the NATO ASI Series book series (NSSE, volume 205)


We introduce the formalism needed to treat nonequilibrium statistical mechanics, to study transport processes and to compute transport coefficients. In particular we discuss linear response theory and the associated Green-Kubo formulas. In the second part we show how to implement these theoretical ideas to simulate directly nonequilibrium molecular dynamics (NEMD). The specially important case of small perturbations will be presented within the framework of the subtraction technique, which permits to test the validity range of the linear response. A separate but closely related field, at least as far as simulations aspects are considered, is that offered by the calculation of the rate constants of rare, activated events. In the third part of these lectures we recall the statistical mechanical formation expressing the rate constants of rare events. We also discuss how to alter a standard molecular dynamics (MD) experiment to simulate frequently the rare events under study and to compute the rate constant (Bennett-Chandler approach).


Molecular Dynamic Reaction Coordinate Transport Coefficient Free Energy Barrier Time Correlation Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Nosé, J. Chem. Phys. 81 (1984) 511ADSCrossRefGoogle Scholar
  2. [1a]
    S. Nosé, Mol. Phys. 57 (1986) 187ADSCrossRefGoogle Scholar
  3. [2]
    W.G. Hoover, Phys. Rev. A 31 (1985) 1695ADSGoogle Scholar
  4. [3]
    L. Onsager, Phys. Rev. 37 (1931) 405ADSCrossRefGoogle Scholar
  5. [3a]
    L. Onsager, Phys. Rev. 38 (1931) 2256ADSCrossRefGoogle Scholar
  6. [4]
    R. Kubo, J. Phys. Soc. Jpn. 12 (1957) 570MathSciNetADSCrossRefGoogle Scholar
  7. [4a]
    R. Kubo, Rep. Progr. Phys. 29 (1966) 255ADSCrossRefGoogle Scholar
  8. [5]
    J.M. Luttinger, Phys. Rev. 135 (1964) A 1505MathSciNetADSCrossRefGoogle Scholar
  9. [6]
    J.L. Jackson and P. Mazur, Physica 30 (1964) 2295MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. [7]
    L.P. Kadanoff and P.C. Martin, Annals of Physics 24(1963) 419MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. [8]
    R. Zwanzig, Ann. Rev. Phys. Chjem. 16 (1965) 67ADSCrossRefGoogle Scholar
  12. [9]
    J.J. Erpenbeck and W.W. Wood, Modern Theoretical Chemistry, vol. 5, Statistical Mechanism Part B, ed. by B J. Berne (Plenum Press, N.Y. 1977)Google Scholar
  13. [10]
    R. Zwanzig and N.K. Ailawadi, Phys. Rev. 182 (1969) 181MathSciNetCrossRefGoogle Scholar
  14. [11]
    R.J. Alder and T.E. Wainwright, Phys. Rev. A 1 (1970) 18ADSCrossRefGoogle Scholar
  15. [12]
    C. Hoheisel, R. Vogelsang, Comp. Phys. Rep. 8 (1988) 1ADSCrossRefGoogle Scholar
  16. [13]
    A.W. Lee and S.F. Edwards, J. Phys. C 5 (1972) 1921ADSGoogle Scholar
  17. [14]
    E.N. Gosling, I.R. Mc Donald and R. Singer, Mol. Phys. 26 (1973) 1475ADSCrossRefGoogle Scholar
  18. [15]
    W.T. Ashurst and W.G. Hoover, Phys. Rev. Lett. 31 (1973) 206ADSCrossRefGoogle Scholar
  19. [15 a]
    W.T. Ashurst and W.G. Hoover, Phys. Rev. A 11 (1975) 658ADSCrossRefGoogle Scholar
  20. [16]
    B.L. Holian and D.J. Evans, J. Chem. Phys. 83 (1985) 241ADSCrossRefGoogle Scholar
  21. [17]
    G. Ciccotti, G. Jacucci and I.R. Mc Donald, Phys. Rev. A 13 (1976) 426ADSCrossRefGoogle Scholar
  22. [18]
    W.G. Hoover and W.T. Ashurst, Adv. Theor. Chem. 1(1975) 1Google Scholar
  23. [19]
    A. Tenenbaum, G. Ciccotti and R. Gallico, Phys. Rev. A 25 (1982) 2778ADSCrossRefGoogle Scholar
  24. [20]
    C. Trozzi, G. Ciccotti, Phys. Rev. A 30 (1984) 1156Google Scholar
  25. [21]
    W.G. Hoover, A.J.C. Ladd, R.B. Hickman, B.L. Holian, Phys. Rev. A 21 (1980) 1756ADSCrossRefGoogle Scholar
  26. [22]
    W.G. Hoover, D.J. Evans, R.B. Hickman, A.J. Ladd, W.T. Ashurst and B. Moran,Phys. Rev. A 22 (1980) 1690ADSCrossRefGoogle Scholar
  27. [23]
    A.J.C. Ladd, Mol. Phys. 53 (1984) 459ADSCrossRefGoogle Scholar
  28. [24]
    M.J. Gillan, AERE Harwell Rep. R9332 (1978)Google Scholar
  29. [24a]
    N.J. Gillan and M. Dixon, J. Phys.C 16 (1983) 869ADSCrossRefGoogle Scholar
  30. [25]
    D J. Evans, Phys. Lett. A 91 (1982) 457ADSCrossRefGoogle Scholar
  31. [26]
    D.J. Evans and G.P. Morriss, Comp. Phys. Rep. 1 (1984) 297ADSCrossRefGoogle Scholar
  32. [27]
    G. Ciccotti and G. Jacucci, Phys. Rev. Lett. 35 (1975) 789ADSCrossRefGoogle Scholar
  33. [27a]
    G. Ciccotti, G. Jacucci and L.R. Mc Donald, J. Stat. Phys. 21, 1 (1979) 1ADSCrossRefGoogle Scholar
  34. [28]
    S.D. Stoddard and J. Ford, Phys. Rev. A 8 (1974) 1504ADSCrossRefGoogle Scholar
  35. [29]
    See e.g., J.P. Ryckaert, A. Bellemans, G. Ciccotti and G.V. Paolini, Phys. Rev. A 39 (1989) 259ADSGoogle Scholar
  36. [29a]
    J.P. Ryckaert, A. Belleman, G. Ciccotti and G.V. Paolini, Phys. Rev.Lett. 60 (1988) 128ADSCrossRefGoogle Scholar
  37. [29b]
    G. Ciccotti, M. Ferrario, B.L. Holian and J.P. Ryckaert, Phys.Rev. A, to be publishedGoogle Scholar
  38. [30]
    G. Ciccotti, M. Ferrario, J.T. Hynes and R. Kapral, J. Chem. Phys.Google Scholar
  39. [31]
    D.A. Zichi, G. Ciccotti, J.T. Hynes and M. Ferrario, J. Phys. Chem. 93 (1989) 6261CrossRefGoogle Scholar
  40. [32]
    D. Chandler, J. Chem. Phys. 68 (1978) 2959ADSCrossRefGoogle Scholar
  41. [33]
    C.H. Bennett, in Diffusion in solids : recent developments, ed. J.J. Burton and A.S.Norwick (Academic Press, New York, 1975) p. 73Google Scholar
  42. [34]
    MJ. Gillan, J.H. Harding and R.J. Tarento, J. Phys. C : Solid State Phys. 20 (1987) 2331ADSCrossRefGoogle Scholar
  43. [35]
    T. Yamamoto, J. Chem. Phys. 33 (1960) 281MathSciNetADSCrossRefGoogle Scholar
  44. [36]
    J.T. Hynes, in Theory of chemical reaction dynamics, Vol. 4, ed. M. Baer (CRC Press, Boca Raton, FL, 1985)Google Scholar
  45. [37]
    D. Chandler, J. Stat. Phys. 42 (1986) 49ADSCrossRefGoogle Scholar
  46. [38]
    R. Kapral, Adv. Chem. Phys. 48 (1981) 71CrossRefGoogle Scholar
  47. [39]
    D. Chandler, “Introduction to Modern Statistical Mechanics”, (Oxford, New York,1987)Google Scholar
  48. [40]
    C.H. Bennett, in Algorithms for chemical computations, ACS Symp. Ser. n°46, ed.R.E. Christofferson (Am. Chem. Soc., Washington D.C., 1977) p. 63CrossRefGoogle Scholar
  49. [41]
    For a nice reconstruction of the various contributions to the Bennett-Chandler technique, see the Chandler contribution to the general discussion of his and R.A.Kuharski paper on p. 341 of Faraday Discuss. Chem. Soc. 85 (1988) 341Google Scholar
  50. [42]
    E.A. Carter, G. Ciccotti, J.T. Hynes and R. Kapral, Chem. Phys. Lett. 156 (1989) 472ADSCrossRefGoogle Scholar
  51. [43]
    G. Ciccotti and J.P. Ryckaert, Comp. Phys. Rept. 4 (1986) 345ADSGoogle Scholar
  52. [44]
    J.P. Ryckaert and G. Ciccotti, J. Chem. Phys. 78 (1983) 7378ADSCrossRefGoogle Scholar
  53. [45]
    D.J. Tobias and C.L. Brooks, Chem. Phys. Lett. 142 (1987) 472ADSCrossRefGoogle Scholar
  54. [46]
    E. Paci, G. Ciccotti, M. Ferrario and R. Kapral, Chem. Phys. Lett. 176 (1991) 581ADSCrossRefGoogle Scholar
  55. [47]
    G. Ciccotti, M. Ferrario, J.T. Hynes and R. Kapral, J. Chem. Phys.Google Scholar
  56. [48]
    G. Ciccotti, M. Ferrario, J.T. Hynes and R. Kapral, Chem. Phys. 129 (1989) 241CrossRefGoogle Scholar
  57. [49]
    D.A. Zichi, G. Ciccotti, J.T. Hynes and M. Ferrario, J. Phys. Chem. 93 (1989) 6261CrossRefGoogle Scholar
  58. [50]
    E. Paci and G. Ciccotti, J. Phys. C, submittedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • G. Ciccotti
    • 1
  1. 1.CECAM, bâtiment 506Université de Paris-SudOrsay, CedexFrance

Personalised recommendations