Advertisement

Potentials for the Classical Simulation of Molecular Systems: Current and Future Model Intermolecular Potentials

  • S. L. Price
Chapter
Part of the NATO ASI Series book series (NSSE, volume 205)

Abstract

In the past, classical simulations of molecular materials have relied on the isotropic atom-atom model potential to represent the intermolecular forces. However, this model does not always provide satisfactory results, because it is too simple. Recent advances in the theory of intermolecular forces have led to more realistic, ab initio based, anisotropic site-site potentials for small polyatomic molecules, and show the way forward for the development of more realistic potentials for larger molecules. In particular, the representation of the effects of lone pair and π electron density on the potential, the modelling of hydrogen bonding, and assumptions concerning the transferability of potentials between molecules, can all be improved.

Keywords

Lone Pair Intermolecular Force Multipole Moment Multipole Expansion Intermolecular Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Maitland, G.C., Rigby, M., Smith, E.B. and Wakeham, W.A. (1981) Intermolecular Forces, Clarendon Press, Oxford.Google Scholar
  2. [2]
    Buckingham, A.D. (1967) ’Permanent and induced molecular moments and long-range intermolecular forces’, Adv. Chem. Phys. 12, 107–142.CrossRefGoogle Scholar
  3. [3]
    Gray, C.G. and Gubbins, K.E. (1984) Theory of Molecular Fluids, Volume 1: Fundamentals,Clarendon press, Oxford.zbMATHGoogle Scholar
  4. [4]
    Stone, A.J. and Price, S.L. (1988) ’Some new ideas in the theory of intermolecular forces:anisotropic atom-atom potentials’, J. Phys. Chem. 92, 3325–3335.CrossRefGoogle Scholar
  5. [5]
    Axilrod, B.M. and Teller, E. (1943) ’Interaction of van der Waals type between three atoms’, J. Chem. Phys. 11, 299–300.ADSCrossRefGoogle Scholar
  6. [6]
    McLachlan, A.D. (1963) ’Retarded dispersion forces between molecules’, Proc. Roy. Soc A271, 387–401.MathSciNetADSGoogle Scholar
  7. [7]
    Mason, E.A. and Monchick, L. (1967) ’Methods for the determination of intermolecular forces’, Adv. Chem. Phys. 12, 329–387.CrossRefGoogle Scholar
  8. [8]
    Pertsin A.J. and Kitaigorodsky A.I. (1987) The atom-atom potential method, Springer-Verlag Berlin Heildelberg.CrossRefGoogle Scholar
  9. [9]
    Williams, D.E. and Starr, T.L. (1977) ’Calculation of the crystal structures of hydrocarbons by molecular packing analysis’, Comput. & Chem. 1, 173–177.CrossRefGoogle Scholar
  10. [10]
    Hagler, A.T., Huler, E. and Lifson, S. (1974) ’Energy functions for peptides and proteins.I Derivation of a consistent force-field including the hydrogen bond from amide crystals’, J.Amer. Chem. Soc. 96, 5319–5327.CrossRefGoogle Scholar
  11. [11]
    Mulliken, R.S. (1955) ’Electron population analysis on LCAO-MO molecular wavefunctions’, J. Chem. Phys. 23, 1833–1840.ADSCrossRefGoogle Scholar
  12. [12]
    Momany, F.A. (1978) ’Determination of partial atomic charges from ab initio electrostatic potentials. Application to formamide, methanol and formic acid’, 82, 592–601.Google Scholar
  13. [12A]
    Singh, U.C. and Kollman, P.A. (1984) ’An approach to computing electrostatic charges for molecules’, J. Comput. Chem. 5, 129–145.CrossRefGoogle Scholar
  14. [13]
    Williams, D.E. and Cox, S.R. (1984) ’Nonbonded potentials for azahydrocarbons: the importance of the Coulombic interaction’, Acta Cryst. B40, 404–417.Google Scholar
  15. [14]
    Hsu, L.-Y., and Williams, D.E. (1980) ’Intermolecular potential-function models for crystalline perchlorohydrocarbons’, Acta Cryst. A36, 277–281.Google Scholar
  16. [15]
    Cox, S.R., Hsu, L.-Y. and Williams, D.E. (1981) ’Non-bonded potential function models for crystalline oxohydrocarbons’, Acta Cryst. A37, 293–301.Google Scholar
  17. [16]
    Williams, D.E. and Houpt, D.J. (1986) ’Fluorine nonbonded potential parameters derived from crystalline perfluorocarbons’, Acta Cryst. B42, 286–295.Google Scholar
  18. [17]
    Weiner S.J., Kollman, P.A., Nguyen, D.T. and Case, D.A. (1986) ’An all atom forcefield for simulations of proteins and nucleic acids’, J. Comput. Chem. 7, 230–252.CrossRefGoogle Scholar
  19. [18]
    Rullman, J.A.C. and van Duijnen, P. Th. (1990) ’Potential energy models of biological macromolecules: a case for ab initio quantum chemistry’, Reports in Molecular Theory 1, 1–21.Google Scholar
  20. [19]
    Brooks, B.R., Bruccoleri R.E., Olafson B.D., States, D.J., Swaminathan S. and Karplus M.(1983) ’CHARMM: a program for macromolecular energy, minimization, and dynamics calculations’, J. Comput. Chem. 4, 187–217.CrossRefGoogle Scholar
  21. [20]
    Sippl, M.J., Némethy, G. and Scheraga, H.A. (1984) ’Intermolecular potentials from crystal data 6. Determination of empirical potentials for O-H... O=C hydrogen bonds from packing configurations’, J. Phys. Chem. 88, 6231–6233.CrossRefGoogle Scholar
  22. [21]
    Roterman, I.K., Gibson K.D. and Scheraga H.A. (1989) ’A comparison of the CHARMM, AMBER and ECEPP potentials for peptides. I Conformational predictions for the tandemly repeated peptide (Asn-Ala-Asn-Pro)9’, J. Biomol. Struc. Dyn. 7, 391–419.CrossRefGoogle Scholar
  23. [22]
    Roterman, I.K., Lambert, M.H., Gibson K.D. and Scheraga H.A. (1989) ’A comparison of the CHARMM, AMBER and ECEPP potentials for peptides. II -ψ maps for N-acetyl alanine N’-methyl amide: comparisons, contrasts and simple experimental tests’, J. Biomol. Struc. Dyn.7, 421–4453.CrossRefGoogle Scholar
  24. [23]
    Boys, S.F. and Bernardi, F. (1970) ’The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors’, Molec. Phys. 19,553–566.ADSCrossRefGoogle Scholar
  25. [24]
    Böhm, H.J. and Ahlrichs R. (1985) ’The N2 N2 interaction. A theoretical investigation’,Molec. Phys. 55, 1159–1169.ADSCrossRefGoogle Scholar
  26. [25]
    Tang K.T. and Toennies, J.P. (1984) ’An improved model for the van der Waals potential based on universal damping functions for the dispersion coefficients’, J. Chem. Phys. 80, 3726–3741.ADSCrossRefGoogle Scholar
  27. [26]
    Knowles, P.J. and Meath, W.J. (1987) ’A separable method for the calculation of dispersion and induction energy damping functions, with applications to the dimers of He, Ne and HF’, Molec Phys 60, 1143–1158.ADSCrossRefGoogle Scholar
  28. [27]
    Ling, M.S.H. and Rigby, M. (1984) ’Towards an intermolecular potential for nitrogen’,Molec. Phys. 51, 855–882.ADSCrossRefGoogle Scholar
  29. [28]
    Amos, R.D. (1985) ’Multipole moments of N2 and F2 using SCF and Møller-Plesset calculations’, Chem. Phys. Letts. 113, 19–22.ADSCrossRefGoogle Scholar
  30. [29]
    Brobjer, J.T. and Murrell, J.N. (1983) ’The intermolecular potential of HF’, Molec. Phys.50, 885–899.ADSCrossRefGoogle Scholar
  31. [30]
    Price, S.L. (1986) ’The limitations of isotropic site-site potentials to describe a N2 N2 intermolecular potential surface’, Molec. Phys. 58, 651–654.ADSCrossRefGoogle Scholar
  32. [31]
    Stone, A.J. (1991) ’Methods for calculating intermolecular potential energy surfaces’, in J.C. Dore and J. Texeira (eds.), Hydrogen Bonded Liquids, Kluwer Academic Publishers,Dordrecht, pp. 25–47.CrossRefGoogle Scholar
  33. [32]
    Hayes, I.C. and Stone, A.J. (1984) ’An intermolecular perturbation theory for the region of moderate overlap’, Molec. Phys. 53, 83–105.ADSCrossRefGoogle Scholar
  34. [33]
    Stone, A.J. (1991) ’Classical Electrostatics in Molecular Interactions’ in Z.B. Maksić (ed.),Theoretical Models of Chemical Bonding, Vol. 4, Springer, Berlin.Google Scholar
  35. [34]
    Berkovitch-Yellin, Z. and Leiserowitz, L. (1980) ’The role of Coulomb forces in the crystal packing of amides. A study based on experimental electron densities’, J. Amer. Chem. Soc. 102,7677–7690.CrossRefGoogle Scholar
  36. [35]
    Stone A.J. and Alderton M. (1984) ’Distributed multipole analysis. Methods and applications’ Molec. Phys. 56, 1047–1064.ADSCrossRefGoogle Scholar
  37. [36]
    Price, S.L., Stone, A.J. and Alderton, M. (1984) ’Explicit formulae for the electrostatic energy, forces and torques between a pair of molecules of arbitrary symmetry’, Molec. Phys.52, 987–1001.ADSCrossRefGoogle Scholar
  38. [37]
    Rein, R. (1973) ’On physical properties and interactions of polyatomic molecules: with applications to molecular recognition in biology’, Adv. Quant. Chem. 7, 335–396.CrossRefGoogle Scholar
  39. [37A]
    Pullman, A. and Perahia D. (1978) ’Hydration scheme of uracil and cytosine’, Theor. Chim.Acta 48, 29–36.CrossRefGoogle Scholar
  40. [37B]
    Vigné-Maeder, F. and Claverie, P. (1988) ’The exact multicenter multipolar part of a molecular charge distribution and its simplified representations’, J. Chem. Phys. 88, 4934–4948.ADSCrossRefGoogle Scholar
  41. [38]
    Sokalski, W.A. and Sawaryn, A. (1987) Correlated molecular and cumulative atomic multipole moments’, J. Chem. Phys. 87, 526–534.ADSCrossRefGoogle Scholar
  42. [39]
    Spackman, M.A. (1986) ’A simple quantitative model of hydrogen bonding’, J.Chem.Phys. 85, 6587–6601.ADSCrossRefGoogle Scholar
  43. [40]
    Price, S.L. (1985) ’A distributed multipole analysis of the charge densities of some aromatic hydrocarbons’, Chem. Phys. Letts. 114, 359–364.ADSCrossRefGoogle Scholar
  44. [41]
    Price, S.L. and Stone A.J. (1983) ’A distributed multipole analysis of the charge densities of the azabenzene molecules’, Chem. Phys. Letts. 98, 419–423.ADSCrossRefGoogle Scholar
  45. [42]
    Price, S.L. and Richards, N.G.J. (1990) ’On the representation of electrostatic fields around ab initio charge distributions’, J. Comput. Aid. Mol. Design, in press.Google Scholar
  46. [43]
    Price, S.L. (1987) ’The structure of the homonuclear diatomic solids revisited. A distorted atom approach to the intermolecular potential’, Molec. Phys. 62, 45–63.ADSCrossRefGoogle Scholar
  47. [44]
    Stone, A.J. (1985) ’Distributed polarizabilities’, Molec. Phys. 56, 1065–1082.ADSCrossRefGoogle Scholar
  48. [45]
    Stone, A.J. (1989) ’Assessment of multipolar approximations to the induction energy’,Chem. Phys. Letts. 155, 111–118.ADSCrossRefGoogle Scholar
  49. [46]
    Stone, A.J. and Tong, C.S. (1989) ’Local and non-local dispersion models’, Chem. Phys.137, 121–135.ADSCrossRefGoogle Scholar
  50. [47]
    Wheatley, R.J. and Price, S.L. (1990) ’An overlap model for estimating the anisotropy of repulsion’, Molec. Phys. 69, 507–533.ADSCrossRefGoogle Scholar
  51. [48]
    Wallqvist, A. and Karlström G. (1989) ’A new non-empirical force field for computer simulations’, Chemica Scripta 29A, 131–137.Google Scholar
  52. [49]
    Wheatley, R.J. and Price, S.L. (1990) ’A systematic intermolecular potential method applied to chlorine’, Molec. Phys. 71, 1381–1404.ADSCrossRefGoogle Scholar
  53. [50]
    Rodger, P.M., Stone, A.J. and Tildesley, D.J. (1988) ’The intermolecular potential of chlorine. A three phase study’, Molec. Phys. 63, 173–188.ADSCrossRefGoogle Scholar
  54. [51]
    Yashonath, S., Price, S.L. and McDonald I.R. (1988) ’A six-site anisotropic atom-atom potential model for the condensed phases of benzene’, Molec. Phys. 64, 361–376.ADSCrossRefGoogle Scholar
  55. [52]
    Price, S.L. (1986) ’Model anisotropic intermolecular potentials for saturated hydrocarbons’,Acta Cryst. B42, 388–401.ADSGoogle Scholar
  56. [53]
    Sokalski, W.A., Lowrey, A.H., Roszak, S., Lewchenko, V., Blaisdell, J., Hariharan, P.C.and Kaufmann, J.J. (1986) ’Nonempirical atom-atom potentials for main components of intermolecular interaction energy’, J. Comput. Chem. 7, 693–700.CrossRefGoogle Scholar
  57. [53A]
    Gresh, N., Claverie, P. and Pullman A. (1984) ’Theoretical studies of molecular conformation.Derivation of an additive procedure for the computation of intramolecular interaction energies.Comparison with ab initio SCF computations’, Theor. Chim. Acta 66, 1–20.CrossRefGoogle Scholar
  58. [54]
    Nyburg, S.C. and Faerman, C.H. (1985) ’A revision of van der Waals atomic radii for molecular crystals: N, O, F, S, CI, Se, Br and I bonded to carbon’, Acta Cryst. B41, 274–279.Google Scholar
  59. [55]
    Munowitz, M.G., Wheeler, G.L. and Colson, S.D., (1977) ’A critical evaluation of isotropic potential functions for chlorine. Calculations on the three phases of p-dichlorobenzene at 100K’,Molec. Phys. 34, 1727–1737.ADSCrossRefGoogle Scholar
  60. [56]
    Buckingham A.D. and Fowler P.F. (1985) ’A model for the geometries of van der Waals complexes’, Canad. J. Chem 63, 2018–2025.CrossRefGoogle Scholar
  61. [57]
    Hurst, G.J.B., Fowler, P.W., Stone, A.J., and Buckingham, A.D. (1986) ’Intermolecular forces in van der Waals dimers’, Int. J. Quant. Chem. 29, 1223–1239.CrossRefGoogle Scholar
  62. [58]
    Mitchell, J.B.O. and Price, S.L. (1990) ’The nature of the N-H•••O=C hydrogen bond: an Intermolecular Perturbation Theory study of the formamide/formaldehyde complex’, J. Comput.Chem. 11, 1217–1233.CrossRefGoogle Scholar
  63. [59]
    Taylor, R., Kennard, O. and Versichel, W. (1983) ’Geometry of the N-H •••O=C hydrogen bond. 1. Lone-pair directionality’, J. Amer. Chem. Soc. 105, 5761–5766.CrossRefGoogle Scholar
  64. [60]
    Mitchell, J.B.O., and Price, S.L. (1989) ’On the electrostatic directionality of N-H•••O=C hydrogen bonding’, Chem. Phys. Letts. 154, 267–272.ADSCrossRefGoogle Scholar
  65. [61]
    Wallqvist, A., Ahlström, P. and Karlström, G. (1990) ’A new intermolecular energy calculation scheme: Applications to potential surface and liquid properties of water’, J. Phys.Chem. 94, 1649–1656.CrossRefGoogle Scholar
  66. [62]
    Finney J.L. (1989) ’Charges, repulsions and cooperativity in water potentials’,Chemica Scripta 29A, 123–130.Google Scholar
  67. [63]
    Faerman, C.H. and Price, S.L. (1990) ’A transferable distributed multipole model for the electrostatic interactions of peptides and amides’, J. Amer. Chem. Soc. 112, 4915–4926.CrossRefGoogle Scholar
  68. [64]
    Bellido, M.N. and Rullman, J.A.C. (1989) ’Atomic charge models for polypeptides derived from ab initio calculations’, J. Comput. Chem. 10, 479–487.CrossRefGoogle Scholar
  69. [65]
    Price, S.L., Faerman, C.H. and Murray C.W. (1991) ’Towards accurate transferable electrostatic models for polypeptides: a distributed multipole study of blocked amino acid residue charge distributions’, J. Comput. Chem., submitted.Google Scholar
  70. [66]
    Price, S.L., Harrison, R.J. and Guest, M.F. (1989) ’An ab initio distributed multipole study of the electrostatic potential around an undecapeptide cyclosporin derivative and a comparison with point charge electrostatic models’, J. Comput. Chem. 10, 552–567.CrossRefGoogle Scholar
  71. [67]
    Almlöf, J., Faegri, K. and Korsell, K. (1982) ’Principles for a direct SCF approach to LCAO-MO ab initio calculations’, J. Comput. Chem. 3, 385–399.CrossRefGoogle Scholar
  72. [68]
    Mitchell, J.B.O. and Price, S.L. (1991) ’On the relative strength of amide-amide and amide-water hydrogen bonds’, Chem. Phys. Letts., in press.Google Scholar
  73. [69]
    Stone, A.J. (1978) ’The description of bimolecular potentials, forces and torques: the S and V fimction expansion’, Molec. Phys. 36, 241–256.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • S. L. Price
    • 1
  1. 1.Department of ChemistryUniversity College LondonLondonEngland

Personalised recommendations