Advertisement

Diversity of Cluster Structures in Mammalian Metallothionein: Interplay Between Metal Ions and Polypeptide Chain

  • M. Vašák
  • R. Bogumil
Chapter
Part of the NATO ASI Series book series (ASEN2, volume 26)

Abstract

After introducing the 3D structure of mammalian metallothioneins (MTs), a class of low molecular weight metal-binding proteins, spectroscopic evidence for the metal selectivity of clusters and their structural changes upon binding of different divalent metal ions is presented. An interplay between both the chemistry of metal ions and the steric requirements of the polypeptide chain as the cause of the diversity of the metal-thiolate cluster structures in MT is discussed. Moreover, a metal-assisted ligand (apoMT) preorganization as a general concept for the formation of MT structure has been proposed.

Keywords

Mossbauer Spectrum Cluster Volume Cysteine Thiolates Metal Selectivity Magnetic Susceptibility Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Margoshes, M. and Vallee, B.L. (1957) A cadmium protein from equine kidney cortex, J. Am. Chem. Soc. 79, 4813.Google Scholar
  2. 2.
    Kägi, J.H.R. and Vallee, B.L. (1960) Metallothionein: a cadmium-and zinc-containing protein from equine renal cortex, J. Biol. Chem. 235, 3460–3465.Google Scholar
  3. 3.
    Kägi, J.H.R. and Schäffer A. (1989) Biochemistry of metallothionein, Biochemistry 27, 8509–8515.CrossRefGoogle Scholar
  4. 4.
    Templeton, D.M. and Cherian, M.G. (1991) Toxicological significance of metallothionein, Methods Enzymol 205, 11–24.CrossRefGoogle Scholar
  5. 5.
    Kägi, J.H.R. (1991) Overview of metallothionein, Methods Enzymol. 205, 613–626.CrossRefGoogle Scholar
  6. 6.
    Hamer, D.H. (1986). Metallothionein, Ann. Rev. Biochem. 55, 913–951.CrossRefGoogle Scholar
  7. 7.
    Pountney, D.L., Kägi, J.H.R and Vašák, M. (1995) Metallothioneins, in Handbook on Metal-Ligand Interaction in Biological Fluids, (G. Berthon, ed.), Marcel Dekker Inc., Vol. 1, 431–442.Google Scholar
  8. 8.
    Vašák, M. and Kägi, J.H.R. (1994) Metallothioneins, in Encyclopedia of Inorganic Chemistry (King, R.B., ed.), John Wiley & Sons Ltd., Vol. 4, 2229–2241.Google Scholar
  9. 9.
    Vašák, M. and Kägi, J.H.R. (1983) Spectroscopic properties of metallothioneins, Met. Ions Biol. Syst. 15, 213–273.Google Scholar
  10. 10.
    Uchida, Y., Takio, K., Titani, K., Ihara, Y. and M. Tomonaga (1991) The growth inhibitory factor that is deficient in Alzheimer’s disease brain is a 68 amino acid metallothionein-like protein, Neuron 7, 337–347.CrossRefGoogle Scholar
  11. 11.
    Quaife, C.J., Findley, S.D., Erickson J.C., Froelick, G.J., Kelly, E.J., Zambrowicz, B.P. and Palmiter R.D. (1994) Induction of a new metallothionein isoform (MT-IV) occurs during differentiation of stratified squamous epithelia, Biochemistry 33, 7250–7259.CrossRefGoogle Scholar
  12. 12.
    Fowler, B.A., Hildebrand, C.E., Kojima, Y. and Webb, M. (1987) Nomenclature of metallothionein, Experientia Suppl. 52, 19–22.Google Scholar
  13. 13.
    Arseniev, A., Schultze, P., Wörgötter, E., Braun, W., Wagner, G., Vašák, M., Kägi J.H.R. and Wüthrich K. (1988) The three-dimensional structure of rabbit liver Cd7-metallothionein-2a in aqueous solution determined by nuclear magnetic resonance, J. Mol. Biol. 201, 637–657.CrossRefGoogle Scholar
  14. 14.
    Schultze, P. Wörgötter, E., Braun, W., Wagner, G., Vašák, M., Kägi, J. H. R. and Wüthrich, K. (1988) The conformation of Cd7-metallothionein-2 from rat liver in aqueous solution determined by nuclear mgnetic resonance, J. Mol. Biol. 203, 251–268.CrossRefGoogle Scholar
  15. 15.
    Messerle, B.A., Schäffer, A., Vašák, M., Kägi, J.H.R. and Wüthrich K. (1990) Three-dimensional structure of human 113Cd7-metallothionein-2 in solution by nuclear magnetic resonance spectroscopy, J. Mol. Biol. 214, 765–779.CrossRefGoogle Scholar
  16. 16.
    Robbins, A.H., McRee, D.E., Williamson, M., Collett, S.A., Xuong, N.H., Furey, W.F., Wang, B.C. and Stout, C.D. (1991) Refined crystal structure of Cd, Zn metallothionein at 2.0 Å resolution, J. Mol. Biol. 221, 1269–1293.Google Scholar
  17. 17.
    Braun, W., Vašák, M., M., Robbins, A.H., Stout, C.D., Wagner, G., Kägi, J.H.R. and Wüthrich, K. (1992) Comparison of the NMR solution structure and the X-ray crystal structure of rat Metallothionein-2, Proc. Natl. Acad. Sci. USA 89, 10124–10128.CrossRefGoogle Scholar
  18. 18.
    Messerle, B.A., Schäffer, A., Vašák, M., Kägi, J.H.R. and Wüthrich K. (1992) Comparison of the solution conformation of human Zn7-metallothionein-2 and Cd7-metallothionein-2 using nuclear magnetic resonance spectroscopy, J. Mol. Biol 225, 433–443.CrossRefGoogle Scholar
  19. 19.
    Bertini, I., Luchinat, C., Messori, L. and Vašák, M. (1989) The 1H NMR-spectra of the Co4S11 cluster in metallothioneins: A theoretical model, J. Am. Chem. Soc. 111, 7300–7303.CrossRefGoogle Scholar
  20. 20.
    Bertini, I., Luchinat, C., Messori, L. and Vašák, M. (1993) Two-dimensional NMR studies of Co(II)7 rabbit liver metallothionein, Eur. J. Biochem. 211, 235–240.CrossRefGoogle Scholar
  21. 21.
    Ding, X.-Q., Bill, E., Good, M., Trautwein, A.X. and Vašák, M. (1988) Möss-bauer studies on the metal-thiolate cluster formation in Fe(II)-metallothionein, Eur. J. Biochem. 171, 711–714.CrossRefGoogle Scholar
  22. 22.
    Nettesheim, D. G., Engeseth, H. R. & Otvos, J. D. (1985) Products of metal exchange reactions of metallothionein, Biochemistry, 24 6744–6751.CrossRefGoogle Scholar
  23. 23.
    Vašák, M., Galdes, A., Kägi, J.H.R., Bremner, L, Young, B. W. and Hill, H.A.O. (1980) Investigation of the structure of metallothionein by proton nuclear magnetic resonance spectroscopy, Biochemistry, 19, 416–425.CrossRefGoogle Scholar
  24. 24.
    Martell, A.E., Hancock, R.D. & Motekaitis, R.J. (1994) Factors effecting stabilities of chelate, macrocyclic and macrobicyclic complexes in solution, Coord. Chem. Reviews, 133, 39–65.CrossRefGoogle Scholar
  25. 25.
    Fausto da Silva, J.J.R. and Williams, R.J.P. (1991) The Biological Chemistry of the Elements, Oxford University Press, Oxford.Google Scholar
  26. 26.
    Marmorstein, R., Carey, M., Ptashne, M. and Harrison, S.C. (1992) DNA recognition by GAL4: structure of a protein-DNA complex, Nature, 408–414.Google Scholar
  27. 27.
    Schwabe, J.W. and Klug, A. (1994) Zinc mining for protein domains, Nature Struct. Biol. 1, 345–349.CrossRefGoogle Scholar
  28. 28.
    Messerle, B.A., Bos, M., Schäffer, A., Vašák, M., Kägi, J.H.R. and Wüthrich, K. (1990) Amide proton exchange in human metallothionein-2 measured by nuclear magnetic resonance spectroscopy, J. Mol. Biol. 781–786.Google Scholar
  29. 29.
    Hagen, K.S., Stephan, W.D. and Holm R.H. (1982) Metal Ion Exchange Reactions in Cage Molecules: The systems [M4-nM’n(SC6H5)10]2 (M. M’ = Fe(II), Co(II), Zn(II), Cd(II)) with adamantane-like stereochemistry and the structure of [Fe4(SC6H5)10]2−, Inorg. Chem., 21, 3928–3936; and refs. therein.CrossRefGoogle Scholar
  30. 30.
    Hagen, K.S. and Holm R.H. (1984) Synthesis and stereochemistry of metal(II) thiolates of the types [M(SR)4]2&#2212, [M2(SR)6]2−, and [M4(SR)10]2− (M = Fe(II), Co(II)) Inorg. Chem. 23, 418–427.CrossRefGoogle Scholar
  31. 31.
    Otvos, J.D. and Armitage, I.M. (1980) Structure of the metal clusters in rabbit liver metallothionein, Proc. Natl. Acad. Sci. USA 77, 7094–7098.CrossRefGoogle Scholar
  32. 32.
    Good, M., Hollenstein, R. and Vašák, M. (1991) Metal selectivity of clusters in rabbit liver metallothionein, Eur. J. Biochem. 197, 655–659.CrossRefGoogle Scholar
  33. 33.
    Pountney, D.L. and Vašák, M. (1992) Spectroscopic studies on metal distribution in Co(II)/ Zn(II) mixed-metal clusters in rabbit liver metallothionein-2, Eur. J. Biochem. 209, 335–341.CrossRefGoogle Scholar
  34. 34.
    Hancock, R. D. (1993) The neutral oxygen donor and macrocyclic chemistry, Pure & Appl. Chem. 65, 941–946.CrossRefGoogle Scholar
  35. 35.
    Ding, X.-Q., Buzlaff, Ch., Bill, E., Pountney, D.L., Henkel, G., Winkler, H., Vašák, M. and Trautwein, A.X. (1994) Mössbauer and magnetic susceptibility studies on Iron(II) metallothionein from rabbit liver: Evidence for the existence of an unusual type of [M3(Cys)9]−3 cluster, Eur. J. Biochem. 220, 827–837.CrossRefGoogle Scholar
  36. 36.
    Whitener, M.A., Bashkin, J.A. Hagen, K.S. Girerd, J.-J., Gamp, E. Edelstein, N. and Holm, R. H. (1986) A new inorganic ring system: Planar Fe32-SR)3 in [Fe3(SR)3X6]3− synthesis, structures, and solution conformation and equilibrium, J. Am. Chem. Soc. 108, 5607–5620.CrossRefGoogle Scholar
  37. 37.
    Zerbe, O., Pountney, D.L., von Philipsborn, W. and Vašák, M. (1994) Vicinal ll3Cd, 1Hβ-cysteine coupling in Cd-substituted metalloproteins follows a Karplus-type dependence, J. Am. Chem. Soc. 116, 377–378.CrossRefGoogle Scholar
  38. 38.
    Pountney, D.L., Zerbe, O., von Philipsborn, W., Egan, J.B. and Vašák, M. (1996) 3J(113Cd, 1H) couplings in Cd(S-Cys) and Cd-μ-(S-Cd)-Cd moieties follow a Karplus-like dependence with the Hβ-Cβ-Sγ-Cd torsion angle: Application to protein structure. Bull. Magn. Resonance 17, 145–147.Google Scholar
  39. 39.
    Kobuke, Y., Kobubo and Munakata, M. (1995) Cooperative metal ion binding by metal-organized crown ether, J. Am. Chem. Soc. 117, 12751–12758.CrossRefGoogle Scholar
  40. 40.
    Good, M., Hollenstein, R., Sadler, P.J. and Vašák, M. (1988) 1I3Cd NMR studies on metal-thiolate cluster formation in rabbit Cd(II)-metallothionein: Evidence for a pH dependence, Biochemistry 27, 7163–7166.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • M. Vašák
    • 1
  • R. Bogumil
    • 1
  1. 1.Biochemisches Institut der Universität ZürichZürichSwitzerland

Personalised recommendations