Metallothionein in Cytotoxicity and Genotoxicity of Metals

  • M. George Cherian
  • Peter J. Ferguson
Part of the NATO ASI Series book series (ASEN2, volume 26)


Humans are exposed to metals, both essential and non-essential from a variety of sources in the environment. Several metal ions are essential for humans because they play a vital role in important biological functions. Because of their charge, metal ions can easily form complexes with various ligands such as amino acids, proteins and nucleic acids. These interactions are essential not only for the biological functions of metals, but also for protection against their toxicity. The presence of metals in active sites of certain enzymes can facilitate oxido-reductive and group transfer reactions. In addition, the formation of complexes of metals can influence their solubility, transport through cellular membranes, excretion, and storage. Metals can also affect the expression of certain genes, especially after binding to specific transcription factors. Some of these interactions are specific while others are more general. In certain cases, the direct recognition signals, conferred by specific metal-binding sites on cell membranes, can result in signal transduction reactions in specific organs. A number of metals, particularly from industrial sources, are non-essential and are toxic to cells and the whole organism. This review will discuss the cytotoxicity and genotoxicity of certain metals and the protective role of metal-binding proteins, such as metallothionein, in metal toxicity.


Growth Inhibitory Factor Cadmium Salt Anticancer Drug Resistance Metallothionein Synthesis Free Ionic Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Harris, E.D. (1995) Role of ligands in the translocation of metals, in G. Berthon (ed.), Handbook of Metal-Ligand Interactions in Biological Fluids, Marcel Dekker, Inc., New York, pp. 71–88.Google Scholar
  2. 2.
    Kagi, J.H.R. (1993) Evolution, structure and chemical activity of class I metallothionein: An overview, in K.T. Suzuki, N. Imura and M. Kimura (eds.), Metallothionein III, Birkhauser, Verlag, Basal, pp. 29–55.Google Scholar
  3. 3.
    Stohs, S.J. and Bagchi, D. (1995) Oxidative mechanisms in the toxicity of metal ions, Free Radical Biol. Med. 18: 321–336.CrossRefGoogle Scholar
  4. 4.
    Harris, E.D. (1992) Regulation of antioxidant enzymes. FASEB J. 6: 2675–26Google Scholar
  5. 5.
    Cherian, M.G. and Chan, H.M. (1993) Biological functions of metallothionein, in K.T. Suzuki, N. Imura and M. Kimura (eds.), Metallothionein III, Birkhauser, Verlag, Basal, pp. 87–109.Google Scholar
  6. 6.
    Grill, E., Winnacker, E.L. and Meinhart, H.Z. (1986) Phytochelatins: The principal heavy-metal complexing peptides of higher plants, Science 230: 674–676.CrossRefGoogle Scholar
  7. 7.
    Cherian, M.G. and Goyer, R.A. (1995) Metal-protein complexes in detoxification processes, in G. Berthon (ed.), Handbook of Metal-Ligand Interactions in Biological Fluids, Marcel Dekker, Inc., New York, pp. 648–653.Google Scholar
  8. 8.
    Chin, T.A. and Templeton, D.M. (1993) Protective elevations of glutathione and metallothionein in cadmium-exposed mesoangial cells, Toxicology 11: 145–156.CrossRefGoogle Scholar
  9. 9.
    Silver, S. and Walderhaug, M. (1995) Bacterial plasmid-mediated resistances to mercury, cadmium and copper, in R.A. Goyer and M.G. Cherian (eds.), Toxicology of Metals, Handbook of Experimental Pharmacology 115, Springer-Verlag, Berlin, pp. 435–458.Google Scholar
  10. 10.
    Bryan, S.E., Simon, S.J., Vizard, D.L. and Hardy, K.J. (1976) Interactions of mercury and copper with constitutive heterochromatin and enchromatin in vivo and in vitro, Biochemistry 15: 1667–1676.CrossRefGoogle Scholar
  11. 11.
    Kawanishi, S. (1995) Role of active oxygen species in metal-induced DNA damage, in R.A. Goyer and M.G. Cherian (eds.), Toxicology of Metals, Handbook of Experimental Pharmacology 115, Springer-Verlag, Berlin, pp. 349–371.Google Scholar
  12. 12.
    Cai, L., Koropatnick, J. and Cherian, M.G. (1995) Metallothionein protects DNA from copper-induced but not iron-induced cleavage in vitro, Chemico-Biol. Interact. 96: 143–155.CrossRefGoogle Scholar
  13. 13.
    Li, W., Zhao, Y. and Chou, I.N. (1993) Alterations in cytoskeletal protein sulfhydryls and cellular glutathione in cultured cells exposed to cadmium and nickel ions, Toxicology 11: 65–79.Google Scholar
  14. 14.
    Chandra, R.K. and Cherian, M.G. (1973) Isolation and partial characterization of a mercury binding nonhistone protein component from rat kidney nuclei, Biochem. Biophys. Res. Comm. 50: 1013–1019.CrossRefGoogle Scholar
  15. 15.
    Huang, X., Frenkel, K., Klein, C.B. and Costa, M. (1993) Nickel induces increased oxidants in intact cultured mammalian cells as detected by dichlorofluorescein fluorescence, Toxicol. Appl. Pharmacol. 120: 29–36.CrossRefGoogle Scholar
  16. 16.
    Miura, K., Naganuma, A., Himeno, S. and Imura, N (1995) Mercury toxicity, in R.A. Goyer and M.G. Cherian (eds.), Toxicology of Metals, Handbook of Experimental Pharmacology 115, Springer-Verlag, Berlin, pp. 163–187.Google Scholar
  17. 17.
    Cherian, M.G., Goyer, R.A. and Richardson, D.L. (1976) Cadmium-metallothionein induced nephropathy, Toxicol. Appl. Pharmacol 38: 399–408.CrossRefGoogle Scholar
  18. 18.
    Predki, P.F. and Sarkar, B. (1992) Effect of replacement of “Zinc Finger” zinc on estrogen receptor DNA interactions, J. Biol. Chem. 267: 5842–5846.Google Scholar
  19. 19.
    Sarkar, B. (1995) Genetic Response to Metals, Dekker, New York.Google Scholar
  20. 20.
    Orrenius, S., McCabe Jr., M.J. and Nicotera, P. (1992) Ca2+-dependent mechanisms of cytotoxicity and programmed cell death, Tox. Letters 64: 357–364.CrossRefGoogle Scholar
  21. 21.
    Beyersmann, D., Block, C. and Malviya, A.N. (1994) Effects of cadmium on nuclear protein kinase C., Environ. Health Perspect. 102: 177–180.Google Scholar
  22. 22.
    Smith, J.B., Smith, L., Pijuan, V., Zhuang, Y and Chen, Y.C. (1994) Transmembrane signals and protooncogene induction evoked by carcinogenic metals and prevented by zinc, Environ. Health Perspect. 102: 181–189.Google Scholar
  23. 23.
    Goyer, R.A. and Rhyne, B.C. (1973) Pathological effects of lead, Int. Rev. Exp. Pathol. 12: 1–77.Google Scholar
  24. 24.
    Fesus, L, Davies, P.J.A. and Piacentini, M. (1991) Apoptosis: molecular mechanisms in programmed cell death, Eur. J. Cell Biol. 56: 170–177.Google Scholar
  25. 25.
    Lohmann, R.D. and Beyersmann, D. (1993) Cadmium and zinc mediated changes of the Ca2+ dependent cndonuclease in apoptosis, Biochem. Biophys. Res. Comm. 190: 1097–1103.CrossRefGoogle Scholar
  26. 26.
    Lazo, J.S., Schwarz, M.A. and Pitt, B.R. (1994) Metallothionein and cell death, in P.H. Collery, L.A. Poirier, N.A. Littlefield and J.C. Etienne (eds.), Metal Ions in Biology and Medicine, John Libbey, Paris, pp. 15–16.Google Scholar
  27. 27.
    Deng, D.X., Chakrabarti, S., Waalkes, M.P. and Cherian, M.G (1996) Metallothionein and apoptosis in primary human hepatocellular carcinoma and metastatic carcinoma, Proc. Am. Assoc. Cancer Res. 37: 20.Google Scholar
  28. 28.
    Chung, J., Nartey, N.O. and Cherian, M.G. (1986) Metallothionein levels in liver and kidney of Canadians — A potential indicator of environmental exposure to cadmium. Arch. Environ. Hlth. 41: 319–3CrossRefGoogle Scholar
  29. 29.
    Nielson, K.B. and Winge, D.R. (1985) Independence of the domains of metallothionein in metal binding. J. Biol. Chem. 260: 5342–5350.Google Scholar
  30. 30.
    Robbins, A.H., McRae, D.E., Williamson, M., Collett, S.A., Xuong, N.H., Furley, W.F., Wang, B.C. and Stout, C.D. (1991) Refined crystal structure of Cd, Zn metallothionein at 2-0 A resolution. J. Mol. Biol. 111. 1269–1293.Google Scholar
  31. 31.
    Otvos, J.D. and Armitage, I.M. (1980) Structure of the metal clusters in rabbit liver metallothionein. Proc. Natl. Acad. Sci. 11: 7094–7098.CrossRefGoogle Scholar
  32. 32.
    Templeton, D.M., Dean, P.A.W. and Cherian, M.G. (1986) The reaction of metallothionein with murcuribenzoate. Biochem. J. 234: 685–689.Google Scholar
  33. 33.
    Otvos, J.D., Liu, X., Li, H., Shen, G. and Basti, M. (1993) Dynamic aspects of metallothionein structure, in K.T. Suzuki, N. Imura and K. Kimura (eds), Metallothionein III, Birkhauser, Verlag, Basal, pp. 57–74.Google Scholar
  34. 34.
    Stillman, M.J., Shaw III, C.F. and Suzuki, K.T. (eds) (1991) Metallothioneins, VCH Publishers, Inc. New York.Google Scholar
  35. 35.
    Wong, K.L. and Klaassen, C.D. (1979) Isolation and characterization of metallothionein which is highly concentrated in newborn rat liver. J. Biol Chem. 254: 12399–12403.Google Scholar
  36. 36.
    Panemangalore, M., Banerjee, D., Onosaka, S. and Cherian, M.G. (1983) Changes in intracellular accumulation and distribution of metallothionein in rat liver and kidney during postnatal development. Dev. Biol 97: 95–102.CrossRefGoogle Scholar
  37. 37.
    Sato, M. and Bremmer, I. (1993) Oxygen free radicals and metallothionein. Free Radical Biol. Med. 14: 325–337.CrossRefGoogle Scholar
  38. 38.
    Palmiter, R.D. (1987) Molecular biology of metallothionein gene expression. Experientia Suppl 52: 63–80.Google Scholar
  39. 39.
    Uchida, Y., Takio, K., Titani, K., Ihara, H. and Tomonaga, M. (1991) The growth inhibitory factor that is deficient in the Alzheimer’s disease brain is a 68 amino acid metallothionein-like protein. Neuron 7: 337–347.CrossRefGoogle Scholar
  40. 40.
    Palmiter, R.D., Sandgren, E.P., Kodier, D.M., Findley, S.D. and Brinster G(1993) Metallothionein genes and their regulation in transgenic mice, in K.T. Suzuki, N. Imura and K. Kimura (eds), Metallothionein III, Birkhauser, Verlag, Basal, pp. 399–406.Google Scholar
  41. 41.
    Piscator, M. (1964) On cadmium in normal human kidneys together with a report on the isolation of metallothionein from livers of cadmium-exposed rabbits. Nord. Hyg. Tidskv. 48: 76–82.Google Scholar
  42. 42.
    Rugstad, H.E. and Norseth, T. (1975) Cadmium resistance and content of cadmium-binding protein in cultured human cells. Nature 257: 136.CrossRefGoogle Scholar
  43. 43.
    Webb, M. (1987) Toxicological significance of metallothionein, in J.H.R. Kagi and Y. Kojima (eds), Metallothionein II, Birkhauser, Verlag, Basal, pp. 109–134.Google Scholar
  44. 44.
    Cherian, M.G. (1995) Metallothionein and its interaction with metals, in R.A. Goyer and M.G. Cherian (eds), Toxicology of Metals, Handbook of Experimental Pharmacology 115: Springer-Verlag, Berlin, pp. 121–137.Google Scholar
  45. 45.
    Cherian, M.G. and Nordberg, M (1983) Cellular adaptation in metal toxicology and metallothionein. Toxicology 28: 1–15.CrossRefGoogle Scholar
  46. 46.
    Chan, H.M. Zhu, L.F., Zhong, R., Grant, D., Goyer, R.A. and Cherian, M.G. (1993) Nephrotoxicity in rats following liver transplantation from cadmium-exposed rats. Toxicol. Appl. Pharmacol. 123: 89–96.CrossRefGoogle Scholar
  47. 47.
    Lazo, J.S. (1995) Metals and anticancer drug resistance, in R.A. Goyer and M.G. Cherian (eds), Toxicology of Metals, Handbook, of Experimental Pharmacology 115, Springer-Verlag, Berlin, pp. 267–278.Google Scholar
  48. 48.
    Cherian, M.G. (1994) The significance of the nuclear and cytoplasmic localization of metallothionein in human liver and tumour cells. Environ. Hlth. Perspect. 102: 131–135.Google Scholar
  49. 49.
    Satoh, M., Cherian, M.G., Imura, N. and Shinizu, H. (1994) Modulation of resistance to anticancer drugs by inhibition of metallothionein synthesis. Cancer Res. 54: 5255–5257.Google Scholar
  50. 50.
    Koropatnick, J., Kloth, D.M., Kadhim, S., Chin, J.L. and Cherian, M.G. (1995) Metallothionein expression and resistance to cisplatin in a human germ cell tumour cell line. J. Pharmacol. Exp. Therap. 275: 1681–1687.Google Scholar
  51. 51.
    Waalkes, M.P. (1995) Metal carcinogenesis, in R.A. Goyer, C.D. Klaassen and M.P. Waalkes (eds), Metal Toxicology, Academic Press, San Diego, pp. 47–69.Google Scholar
  52. 52.
    Stayner, L., Smith, R., Schnorr, T, Leman, R. and Thun, M. (1993) Letter to the Editor. Ann. Epidemiol. 3: 114–116.CrossRefGoogle Scholar
  53. 53.
    Waalkes, M.P. Coogan, T.P. and Barter, R.A. (1992) Toxicological principles in metal carcinogenesis with special emphasis on cadmium. Crit. Rev. Toxicol. 22: 175–201.CrossRefGoogle Scholar
  54. 54.
    Heinrich, U., Peters, L., Ernst, H., Rittinghausen, S., Dasenbrock, C. and Konig, H. (1989) Investigation on the carcinogenic effects of various cadmium compounds after inhalation exposure in hamsters and mice. Exp. Pathol. 37: 253–258.CrossRefGoogle Scholar
  55. 55.
    Kenaga, C., Cherian, M.G., Cox, C. and Oberdorster, G. (1996) Metallothionein induction and pulmonary responses to inhaled cadmium chloride in rats and mice. Fund. Appl. Toxicol. 30: 204–212.CrossRefGoogle Scholar
  56. 56.
    Sunderman, F.W. Jr, and Barber, A.M. (1988) Finger-loops, oncogenes and metals. Ann. Clin. Lab. Sci. 18: 267–288.Google Scholar
  57. 57.
    Schwarz, M.A., Lazo, J. Yalowich, J.C., Allen, W.P., Whitmore, M., Bergonia, H.A., Tzeng, E., Billiar, T.R., Robbins, P.D., Lancaster, J.R. and Pitt, B.R. (1995) Metallothionein protects against the cytotoxic and DNA damaging effects of nitric oxide. Proc. Natl. Acad. Sci. 92: 4452–4456.CrossRefGoogle Scholar
  58. 58.
    Oikawa, S., Kurasaki, M., Kojima, Y. and Kawanishi, S. (1995) Oxidative and nonoxidative mechanisms of site-specific DNA cleavage induced by copper-containing metallothionein. Biochemistry 34: 8763–8770.CrossRefGoogle Scholar
  59. 59.
    Stephenson, G.F., Chan, H.M and Cherian, M.G. (1994) Copper-metallothionein from the toxic milk mutant mouse enhances lipid peroxidation initiated by an organic hydroperoxide. Toxicol. Appl. Pharmacol. 125: 90–96.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • M. George Cherian
    • 1
  • Peter J. Ferguson
    • 1
  1. 1.Department of PathologyUniversity of Western OntarioLondonCanada

Personalised recommendations