Interaction of Al(III) with Biomolecules: Bioinorganic Chemistry and Biological Implication

  • Tamas Kiss
  • Andrea Lakatos
  • Erzsebet Kiss
  • R. Bruce Martin
Part of the NATO ASI Series book series (ASEN2, volume 26)


For a long time aluminium was considered to be an innocuous element for humans, in large part because of the very low intestinal uptake of Al from the diet. It is now clear that Al is an important toxicant in plants, experimental animals and humans [1]. The increase in the Al exposure of the population becomes of greater concern in light of a series of studies which shows an increased risk of various neurological disorders, including Alzheimer’s disease (AD) and other skeletal and hematological disorders, associated with elevated Al levels in body fluids and tissues [1–5].


Stability Constant Organic Phosphate Bioinorganic Chemistry Linear Free Energy Relationship Basic Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nicolini, M., Zatta, P.F. and Corain, B. (1991, 1994) Aluminum in Chemistry Biology and Medicine, Vol 1 Cortina Intnl. Verona, Vol 2, Harwood Acad. Publ.Google Scholar
  2. 2.
    Martin, R.B. (1994) Aluminum: a neurotoxic product of acid rain, Accts. Chem. Res., 27, 204–210.CrossRefGoogle Scholar
  3. 3.
    Kiss, T. and Farkas, E. (1996) Interaction of Al(III) with Biomolecules: Bioinorganic Chemistry and Biological Implications, in R. Hay, I.R. Dilworth and K.B. Nolan (eds.), Perspectives on Bioinorganic Chemistry, Vol 3, Ch 4, JAI Press.Google Scholar
  4. 4.
    Kiss, T. (1995) Interaction of Al(III) with biomolecules. — Any relevance to Alzheimer’s disease, Arch. Gerontology Geriatrics, 21, 99–112.CrossRefGoogle Scholar
  5. 5.
    Harris, W.R., Berthon, G., Day, J.P., Exley, C., Flaten, T.P., Forbes, W.F., Kiss, T., Orvig, C. and Zatta, P.F. (1996) Speciation of Aluminum in biological systems, J. Toxicol. Environm. Health, (in press).Google Scholar
  6. 6.
    Öhman, L-O. and Martin, R.B. (1994) Citrate as the main small molecule binding Al3+ in Serum. Clin. Chem., 40, 598–601.Google Scholar
  7. 7.
    Daydé, S., Fiella, M. and Berthon, G. (1990) Aluminum speciation studies in biological fluids. Part 3. Quantitative investigation of aluminum-phosphate complexes and assessment of their potential significance in vivo. J. Inorg. Biochem., 38, 241–259.CrossRefGoogle Scholar
  8. 8.
    Duffield, J.R., Edwards, K., Evans, D.A., Morrish, D.M., Vobe, R.A. and Williams, D.R. (1991) Low molecular mass aluminum complex speciation in biofluids. J. Coord. Chem., 23, 277–290.CrossRefGoogle Scholar
  9. 9.
    Harris, W.R. (1992) Equilibrium model for speciation of aluminum in serum, Clin. Chem., 38, 1809–1818.Google Scholar
  10. 10.
    Jackson, G.E. (1990) Aluminium, gallium and indium in biological fluids — a computer model of blood plasma, Polyhedron, 9, 163–170.CrossRefGoogle Scholar
  11. 11.
    Clevette, D.J. and Orvig, C. (1990) Comparison of ligands of differing denticity and basicity for the in vivo chelation of aluminium and gallium, Polyhedron, 9, 151–161.CrossRefGoogle Scholar
  12. 12.
    Öhman, L.O. and Martin, R.B. (1994) Citrate as the main small molecule binding Al3+ in serum. Clin. Chem., 40, 598–601.Google Scholar
  13. 13.
    Bell, J.D., Kubal, G., Radulovic, S., Sadler, P.J. and Tucker, A. (1993) Detection of Aluminium(III) binding to citrate in human blood plasma by proton nuclear magnetic resonance spectroscopy, Analyst, 118, 241–244.CrossRefGoogle Scholar
  14. 14.
    Kiss T., Sóvágó, I. and Martin, R.B. (1991) Al3+ binding by adenosine 5’-phosphates: AMP, ADP, and ATP, Inorg. Chem., 30, 2130–2132.CrossRefGoogle Scholar
  15. 15.
    Crapper, D.R., Quittkat, S., Krishnan, S.S., Dalton, A.J. and De Boni, U. (1980) Intranuclear aluminum content in Alzheimer’s disease, dialysis encephalopathy and experimental aluminum encephalopathy. Acta. Neuropath., 50, 19–24.CrossRefGoogle Scholar
  16. 16.
    Wen, G.Y. and Wisniewski, H.M. (1985) Histochemical localization of aluminum in the rabbit CNS. Acta Neuropath., 68, 175–184.CrossRefGoogle Scholar
  17. 17.
    Dryssen, D., Harakdsson, C., Nyberg, E. and Wedborg, M. (1987) Complexation of aluminum with DNA. J. Inorg. Biochem., 29, 67–75.CrossRefGoogle Scholar
  18. 18.
    Sternberger, N.H., Sternberger, L.A. and Ulrich, J. (1985) Aberrant neurofilament phosphorylation in Alzheimer’s disease. Proc. Nat. Acad. Sci. U.S.A., 82, 4274–4276.CrossRefGoogle Scholar
  19. 19.
    Öhman, L.O. (1988) Stable and metastable complexes in the system H’-Al3+-citric acid, Inorg. Chem., 27, 2565–2570.CrossRefGoogle Scholar
  20. 20.
    Banks, W.A. and Kastin, A.J. (1985) Peptides and the BBB lipophilicity as a predictor of permeability. Brain Res. Bull., 15, 282–292.CrossRefGoogle Scholar
  21. 21.
    Martin, R.B. (1992) Aluminum speciation in biology. In Aluminum in Biology and Medicine, Ciba Foundation Symposium. John Wiley & Sons. New York, pp 5–25.Google Scholar
  22. 22.
    Hollosi, M., Ürge, L., Perczel, A., Kajtár, J., Teplán, I., Ötvös, L. and Fasman, G.D. (1992) Metal ion-induced conformational changes of phosphorylated fragments of human neurofilament (NF-M) protein. J. Mol. Biol., 223, 673–682.CrossRefGoogle Scholar
  23. 23.
    McLachlan, D.R., Dalton, A.J., Kruck, T.P.A., Bell, M.Y., Smith, W.L. Karlow, W. and Andrews, D.F. (1991) Intramuscular desferrioxamine in patients with Alzheimer’s disease. Lancet, 337, 1061–1075.CrossRefGoogle Scholar
  24. 24.
    Meiri, H., Banin, E., Roll, M. and Rousseau, A. (1993) Toxic effect of aluminum on nerve cells and synaptic transmission. Progr. Neurobiol., 40, 89–121.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • Tamas Kiss
    • 1
  • Andrea Lakatos
    • 1
  • Erzsebet Kiss
    • 1
  • R. Bruce Martin
    • 2
  1. 1.Department of Inorganic and Analytical ChemistryKossuth UniversityDebrecenHungary
  2. 2.Department of ChemistryUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations