Advertisement

From the Mass Production of Methylococcus Capsulatus to the Efficient Separation and Isolation of Methane Monooxygenase Proteins. Characterization of Novel Intermediates in Substrate Reactions of Methane Monooxygenase

  • Katherine E. Liu
  • Ann M. Valentine
  • Danli Wang
  • Boi H. Huynh
  • Dale E. Edmondson
  • Athanasios Salifoglou
  • Stephen J. Lippard
Chapter
  • 255 Downloads
Part of the NATO ASI Series book series (ASEN2, volume 26)

Abstract

Methanotrophs are naturally occurring bacteria which utilize methane as their sole source of metabolic energy and carbon.* Due to their ability to catalyze the formation of methanol from methane under ambient conditions, interest has developed over their use as alternative methanol producers.2 In addition, the fact that they oxidize a variety of hydrocarbon substrates other than methane, attracted a lot of attention in their potential exploitation in bioremediation.3 The metalloenzyme system responsible for the conversion of methane to methanol (Reaction 1) in the initial step of their metabolism is methane monooxygenase (MMO).

Keywords

Iron Atom Intermediate Species Iron Center Methane Monooxygenase Methylococcus Capsulatus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anthony, C. (1982) The Biochemistry of Methyl ofrophs; Academic press: New York, pp. 296–379.Google Scholar
  2. 2.
    Dalton, H. and Leak, D. J. (1985) Mechanistic studies on the mode of action of methane mouooxygenase. in H. Degn. R.P. Cox. and H. Toflund (eds.). Gas Enzymoiogy. Reidel. Dordrecht. Holland, p. 169–186.CrossRefGoogle Scholar
  3. 3.
    a) Jahng, D. and Wood, T. K. (1994) Trichloroethylene and chloroform degradation by a recombinant Pseudomonad expressing soluble methane monooxygenase from Methylosinus trichosporium OB3b. Appi Environ. Microbiol. 60.2473–2482. b) Lindstrom. J. E. Prince. R. C Clark, J.C., Grossman, M. J. Yeager. T. R., Braddock, J. F., and Brown, E. (1991) Microbial populations and hydrocarbon biodegradation potentials in fertilized shoreline sediments affected by the T/V Exxon Valdezoil spill. Appl. Environ. Microbiol. 57, 2514-2522.Google Scholar
  4. 4.
    Stanley, S. H. Prior, S. D. Leak, D. J. and Dalton, H. (1983) Copper stress underlies the fundamental change in intracellular location of methane monooxygenase in methane-oxidizing organisms: studies in batch and continuous cultures, Biotech. Lett. 5, 487–492.CrossRefGoogle Scholar
  5. 5.a)
    Liu, K. E. and Lippard, S. J. (1995) Studies of the soluble methane monooxygenase protein system: structure component interaction and hydroxylation mechanism. Adv. Iuorg. Chem. 42, 263–289. b) Fox, B. G. Froland. W. A. Jollie, D. R., and Lipscomb, J. D. (1990) Methane monooxygenase from Methylosinus trichosporiuin OB3b. in M.Lidstrom (ed.). “Methods in Enzymology”. Academic Press. San Diego. CA. 80. 191-202.Google Scholar
  6. 6.
    Liu, K. E. Johnson, C. C. Newcomb, M. and Lippard, S. J. (1993) Radical clock substrate probes and kinetic isotope effect studies of the hydroxylation of hydrocarbons by methane monooxygenase, J. Am. Chem. Soc. 115. 939–947.CrossRefGoogle Scholar
  7. 7.
    Pilkington, S. J. and Dalton, H. (1990) Soluble methane mouooxygenase from Methylococcus capsulatus Bath, in M. Lidstrom (ed.). Methods in Enzymology. Academic Press: San Diego.CA. 188. pp. 181–190.Google Scholar
  8. 8.
    Ravi, N. Bollinger, J. M. Jr., Huynh, B. H. Edmondson, D. and Stubbe, J (1994) Mechanism of assembly of the tyrosyl radical-diiron(III) cofactor of E.coli ribonucleatide reductase. 1. Mössbauer characterization of the diferic radical precursor. J. Am. Chem. Soc. 116. 8007–8014.CrossRefGoogle Scholar
  9. 9.
    a) Rosenzweig, A. C. Frederick, C. A. Lippard, S. J. and Nordlund, P. (1993) Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane, Nature 366, 537–543. b) Rosenzweig. A. C., Nordlund. P. Takahara. P. M. Frederick. C. A. and Lippard, S. J. (1995) Geometry of the soluble methane monooxygenase catalytic diiron center in two oxidation states. Chan. Biol. 2, 409-418.CrossRefGoogle Scholar
  10. 10.
    Lipscomb, J. D. (1994) Biochemistry of the soluble methane monooxygenase, Aimu. Rev Microbiol. 48, 371–399.CrossRefGoogle Scholar
  11. 11.
    Liu, K. E. Valentine, A. M., Wang, D., Huynh, B. H. Edmondson, D. E., Salifoglou, A. and Lippard, S. J. (1995) Kinetic and spectroscopic characterization of intermediates and component interactions in reactions of methane monooxygenase from Methylococcus capsulatus (Bath). J. Am. Chem. Soc. 117, 10174–10185.CrossRefGoogle Scholar
  12. 12.
    Liu, K. E. Wang, D., Huynh, B. H., Edmondson, D. E., Salifoglou, A. and Lippard, S. J. (1994) Spectroscopic detection of intermediates in the reaction of dioxygen with the reduced methane monooxygenase hydroxylase form Methylococcus capsulatus (Bath), J. Am. Chem. Soc. 116, 7465–7466.CrossRefGoogle Scholar
  13. 13.
    Liu, K. E., Valentine, A. M., Qiu, D. Edmondson, D. E., Appelman, E. H., Spiro, T. G. and Lippard, S. J. (1995) Characterization of a diiron(III) peroxo intermediate in the reaction cycle of methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath), J. Am. chem. Soc. 117, 4997–4998.CrossRefGoogle Scholar
  14. 14.a)
    Lee, S.-K., Nesheim, J. C. and Lipscomb, J. D. (1993)Transient intermediates of the methane monooxygenase catalytic cycle, J. Biol. Chem. 268, 21569–21577. b) Lee. S.-K., Fox. B. G., Froland. W. A., Lipscomb, J. D., and Münck, E. (1993) A transient intermediate of the methane monooxygenase catalytic cycle containing an Fe(IV)Fe(IV) cluster J. Am. Chem. Soc. 115, 6450-6451.Google Scholar
  15. 15.a)
    )Que, L., Jr. and True, A. E. (1990) Dinuclear iron-and manganese-oxo sites in Biolog. Prog, lnorg. Chem. 38, 97–200. b) Kurtz. D. M. (1990) Oxo-and hydroxo-bridged diiron complexes: a chemical perspective on a biological unit. Chem. Rev. 90, 585.-606. c) Wilkins. R. G.(1990) Binuclear iron centres in proteins. Chem. Soc. Rev. 21, 171-178. d) Brennan. B. A., Chen, Q., Juarrez-Garcia, C., True, A. E., O’Connor. C. J. and Que. L., Jr. (1991) Models for diiron-oxo proteins: The peroxide adduct of Fe2(HPTB)(OH)(NO3)4. lnorg. Chem. 30, 1937-1943. e) Nishida. Y., Takeuchi. M., Shimo. H., and Kida. S. (1987) Unique Reactivity of peroxide ion trapped by binuclear iron(III) complex. Z Naturforsch, B: Chem. Sci. 42B, 52-54.CrossRefGoogle Scholar
  16. 16.
    Kimoon K. and Lippard, S. J. (1996) Structure and Mössbauer spectrum of (μ-1, 2-peroxo)bis(μ-carboxylato)diiron(III) model for the peroxo intermediate in the methane monooxygenase hydroxylase reaction cycle. J. Am. Chem. Soc. 118, 4914–4915.CrossRefGoogle Scholar
  17. 17.
    Ortiz de Montellano, P. R. (1986) Oxygen activation and transfer, in Ortiz de Montellano, P.R. (ed.). Cytochrome P-450 Structure, Mechanism, and Biochemistry. Plenum, New York. p. 217–271.Google Scholar
  18. 18.a)
    Bollinger, J. M., Jr., Tong, W. H., Ravi, N., Huynh, B. H., Edmondson, D. E. and Stubbe, J. (1994) Mechanism of assembly of the tyrosyl radical-diiron(III)cofactor of E. coli nobonucleotide reductase, 2. Kinetics of the excess Fe2+ reaction by optical, EPR, and Mössbauer spectroscopies. J. Am. Chem. Soc. 116, 8015–8023. b) Bolliuger, J. M., Jr., Tong, W. H., Ravi. N., Huynh, B. H., Edmondson and D. E. Stubbe, J. (1994) Mechanism of assembly of the tyrosyl radical-diiron(III) cofactor of E. coli ribonucleotide reductase. 1. Kinetics of the limiting Fe2+ reaction by optical. EPR. and Mössbauer spectroscopies. J. Am. Chem. Soc. 116, 8024-8032.CrossRefGoogle Scholar
  19. 19.
    Feig, A. L. and Lippard, S. J. (1994) Reactions of non-heme iron(II) centers with dioxygen in biology and chemistry, Cham. Rev. 94, 759–805.CrossRefGoogle Scholar
  20. 20.
    a) Green, J. and Dalton, H. (1989) Substrate specificity of soluble methane monooxygenase, Biol. Chem. 264, 17698–17703. b) Andersson. K. K., Froland, W. A., Lee, S.-K. and Lipscomb, J. D.(1991) Dioxygen independent oxygenation of hydrocarbons by methane monooxygenase hydroxylase component. New J. Chem. 15, 411. c) Rataj, M. J., Kauth, J. E. and Donnelly, M. I. (1991) Oxidation of deuterated compounds by high specific activity methane monoocygenase from Methylosinus trichosporium: mechanistic implications, J. Biol. Chem. 266, 18684-18690.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • Katherine E. Liu
    • 1
  • Ann M. Valentine
    • 1
  • Danli Wang
    • 2
  • Boi H. Huynh
    • 2
  • Dale E. Edmondson
    • 3
  • Athanasios Salifoglou
    • 1
  • Stephen J. Lippard
    • 1
  1. 1.Department of ChemistryMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.the Department of PhysicsEmory UniversityAtlantaUSA
  3. 3.the Department of BiochemistryEmory UniversityAtlantaUSA

Personalised recommendations