Advertisement

Modeling Manganese Redox Enzymes

  • Dimitris P. Kessissoglou
Chapter
  • 258 Downloads
Part of the NATO ASI Series book series (ASEN2, volume 26)

Abstract

Manganese is an essential element in many biological processes. Two functional values can be distinguished; the MnII as a Lewis acid, like divalent ions, Magnesium, Calcium, Zinc and in higher oxidation states(MnIII, MnIV) as an oxidation catalyst, like Copper, Iron, Cobalt. Manganese redox enzymes1 with manganese in oxidation states 2+, 3+ and 4+ are: a manganese-containing ribonucleotide reductase 2, 3, 15 isolated from B. ammoniagemes; Mn ThiosulfateOxidase 4 containing a binuclear MnII site; Manganese SOD 5, 6 catalyzing the dismutasion of Superoxide radicals to oxygen and hydrogen peroxide with a single MnIII center; The Manganese Peroxidase(MnP) 7–10 is one of the two known enzymes capable for the oxidative degradation of lignin containing protoporphyrin IX heme prosthetic group; non heme manganese catalase 11–19 containing two manganese per subunit and the Oxygen Evolving Complex 20–40, catalyzing one of the most important reactions occurring in the plants, the light driven oxidation of water to oxygen and protons, containing four manganese atoms while the presence of calcium and chloride ions is required for proper functioning. In this report we will describe how modeling chemistry provides insight into the structure, chemical properties and reactivity of some manganese redox enzymes.

Keywords

Ribonucleotide Reductase Mixed Valence Manganese Atom Trinuclear Complex ORTEP Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pecoraro, V. L.(1992), Manganese Redox Enzymes, VCH Publishers Inc, New York.Google Scholar
  2. 2.
    Stube, J.(1990), Ribonucleotide Reductases: Amazing and Confusing, J. Biol. Chem. 265, 5329–5332.Google Scholar
  3. 3.
    Lynch, J.B., Juarez-Garcia C., Munck, E. and Que, L. Jr., (1989), Mössbauer and EPR Studies of the Binuclear Iron Center in Ribonucleotide Reductase from Escherichia coli. A new Manganese—containing enzyme, J. Biol. Chem. 264, 8091–8096.Google Scholar
  4. 4.
    Cammack, R., Chapman, A., Wei-Ping, Lu, Katagouni, A. and Kelly, D.P.(1989) Evidence that Protein-B of the Thiosulfate-Oxidizing System of Thiobacillus-Versutus Contains a Binuclear Manganese Cluster FEBS Letters 253, 239–243.CrossRefGoogle Scholar
  5. 5.
    Stallmgs, W.C., Partridge, K.A., Strong, R.K. and Ludwig, M.L.(1985), The Structure of Manganese Superoxide Dismutase from Thermus thermophilus HB8 at 2.4-Ă Resolution, J. Biol. Chem., 260, 16424–16432.Google Scholar
  6. 6.
    Ludwig, M.L., Metzger, A.L., Pattridge, K.A. and Stellings, W.C. (1991), Manganese Superoxide Dismutase from Thermus thermophilus. A structural model refined at 1.8Ă Resolution J. Mol. Biol. 219(2), 335–358.CrossRefGoogle Scholar
  7. 7.
    Wariishi, H., Valli, K. and Gold, M.H. (1989), Oxidative Cleavage of a Phenolic Diarylpropane Lignin Model Dimer by Manganese Peroxidase from Phanerochiate chrysporium, Biochemistry, 28, 6017–6023.CrossRefGoogle Scholar
  8. 8.
    Wariishi, H. and Gold, M.H.(1990), Lignin Peroxidase Compound III. Mechanism of Formation and Decomposition, J. Biol. Chem. 265, 2070–2077.Google Scholar
  9. 9.
    Wariishi, H., Dunford, H. B., MacDonald, I. D. and Gold, M. H.(1989), Manganese Peroxidase from the Lignin — degrading Basidiomycete Phanerochaete chrysporium. Transient State Kinetics and Reaction Mechanism, J. Biol. Chem., 264, 3335–3340.Google Scholar
  10. 10.
    Wariishi, H., Valli, K., Renganathan, V. and Gold, M.H. (1989), Thiol-mediated oxidation of Nonphenolic Lignin Model Compounds by Manganese Peroxidase of Phanerochaete chrysosporium, J. Biol. Chem., 264, 14185–14191.Google Scholar
  11. 11.
    Kono, Y. and Fridovich, I. (1983), Isolation and Characterization of the Pseudocatalase of Lactobacillus plantarum, I. J. Biol. Chem., 258, 6015–6019.Google Scholar
  12. 12.
    Kono, Y. and Fridovich, I. (1983), Inhibition and Reactivation of Mn — Catalase. Implication for Valence Changes at the Active Site Manganese, I. J. Biol. Chem., 258, 13646–13648.Google Scholar
  13. 13.
    Penner-Hahn, J. E.(1992) Structural Properties of the Manganese Site in the Manganese Catalases, In Manganese Redox Enzymes, V. L. Pecoraro, Ed., VCH Publishers, Inc.: New York, pp 29–45.Google Scholar
  14. 14.
    Waldo, G. S., Fronko, R. M. and Penner-Hahn, J. E. (1991), Inactivation and Reactivation of Manganese Catalase: Oxidation-Stat Assignements Using X-ray Absorption Spectroscopy, Biochemistry, 30, 10486–10490.CrossRefGoogle Scholar
  15. 15.
    Sheats, J. E., Czernaszewise, R. S., Dismukes, G. C., Rheingold, A. L., Petrouleas, V., Stubbe, J., Armstrong, W. H., Beer, R. H., Lippard, S. J. (1987), Binuclear Manganese (III) Complexes of Potential Biological Significance, J. Am. Chem. Soc., 109, 1435–1444.CrossRefGoogle Scholar
  16. 16.
    Wieghardt, K. (1989), The Active Sites in Manganese — Containing Metalloproteins and Inorganic Model Complexes, Angew. Chem. Int. Ed. Engl. 28, 1153–1172.CrossRefGoogle Scholar
  17. 17.
    Fronko, R. M., Penner-Hahn, J. E. and Bender, C. J. (1988), EPR Spectral Evidence for a Dinuclear Active Site in the Lactobacillus Plantarum Manganese Catalase, J. Am. Chem. Soc. 110, 7554–7555.CrossRefGoogle Scholar
  18. 18.
    Cooper, S. R., Dismukes, G. C., Klein, M. P, Calvin, M. (1978), Mixed Valence Interactions in Di-μ-oxo Bridged Manganese Complexes. Electron Paramagnetic Resonance and Magnetic Susceptibility Studies, J. Am. Chem. Soc. 100, 7248–7252.CrossRefGoogle Scholar
  19. 19.
    Gamelin, D. R., Kirk, M. L., Stemmler, T. L., Pal, S., Armstrong, W. H., Penner-Hahn J. E. and Solomon, E. I.(1994) Electronic Structure and Spectroscopy of Manganese Catalase and di-μ-Oxo [Mn(III)Mn(IV)] Model Complexes, J. Am. Chem. Soc. 116, 2392–2399.CrossRefGoogle Scholar
  20. 20.
    Dismukes, G. C. and Siderer, Y. (1980), EPR Spectroscopic Observations of a Manganese Center Associated with Water Oxidation in Spinach Chloroplasts, FEBS Lett. 121, 78–80.CrossRefGoogle Scholar
  21. 21.
    Dismukes, G. C. and Siderer, Y. (1981), Intermediates of a Polynuclear Manganese Center Involved in Photosynthetic Oxidation of Water Proc. Natl. Acad. Sci. U.S.A. 78, 274–278.CrossRefGoogle Scholar
  22. 22.
    Wille, B.and Lavergne, J. (1982), Measurement of Proton Translocation in Thylakoids under Flashing Light Using a Spin-labeled amine, Photobiochem. Photobiophys. 4, 131–144.Google Scholar
  23. 23.
    Brudvig, G. W., Casey, J. L. and Sauer, K. (1983), The Effect of Temperature on the Formation and Decay of the Multiline EPR Signal Species Associated with Photosynthetic Oxygen Evolution Biochim. Biophys. Acta 723, 366–371.CrossRefGoogle Scholar
  24. 24.
    Zimmerman, J.-L. and Rutherford, A. W. (1984), EPR Studies of the Oxygen Evolving Enzyme in Photosystem II, Biochim. Biophys. Acta, 767, 160–167.CrossRefGoogle Scholar
  25. 25.
    Casey, J. L. and Sauer, K.(1984), EPR Detection of a Cryogenically Photogenerated Intermediate in Photosynthetic Oxygen Evolution, Biochim. Biophys. Acta 761, 21–28.Google Scholar
  26. 26.
    Beck, W. F., de Paula, J. C. and Brudvig, G. W. (1985), Active and Resting States of the O2- Evolving Complex of Photosystem II, Biochemistry 24, 3035–3043.CrossRefGoogle Scholar
  27. 27.
    Brudvig, G. W. and Crabtree, R. H. (1986), Mechanism for Photosynthetic Oxygen Evolution, Proc. Natl. Acad. Sci. USA 83, 4586–4588.CrossRefGoogle Scholar
  28. 28.
    Yachandra, V. K., Guiles, R. D., McDermott, A., Britt, R. D., Dexheimer, S. L., Sauer, K. and Klein, M. P.(1986) The State of Manganese in the Photosynthetic Apparatus. 4. Structure of the Manganese Complex in Photosystem-II Studied Using EXAFS Spectroscopy. The S1 State of the O2 Evolving Photosystem-II Complex from Spinach, Biochim. Biophys. Acta 850, 324–332.CrossRefGoogle Scholar
  29. 29.
    Hansson, O., Aasa, R. and Vaenngaard, T. (1987), The Origin of the Multiline and g = 4.1 Electron Paramagnetic Resonance Signals from the Oxygen — evolving System of Photosystem II, Biophys. J. 51, 825–832.CrossRefGoogle Scholar
  30. 30.
    Cole, J., Yachandra, V. K., Guiles, R. D., McDermott, A. E., Britt, R. D., Dexheimer, S. L., Sauer, K. and Klein, M. P. (1987), Assignment of the g = 4.1 EPR Signal to Manganese in the S2 State of the Photosynthetic Oxygen — Evolving Comlex: An X-Ray Absorption Edge Spectroscopy Study, Biochim. Biophys. Acta, 890, 395–398.CrossRefGoogle Scholar
  31. 31.
    Yachandra, V. K., Guiles, R. D., McDermott, A. E., Cole, J. L., Britt, R. D., Dexheimer, S. L., Sauer, K. and Klein, M. P. (1987), Comparison of the Structure of the Manganese complex in the S1 and S2 States of the Photosynthetic O2- Evolving Complex: An X-ray Absorption Spectroscopy Study, Biochemistry, 26, 5974–5981.CrossRefGoogle Scholar
  32. 32.
    George, G. N., Prince, R. C. and Cramer, S. P. (1989), The Manganese Site of the Photosynthetic Water-splitting Enzyme, Science, 243, 789–791.CrossRefGoogle Scholar
  33. 33.
    Sivaraja, M., Philo, J. S., Lary, J. and Dismukes, G. C. (1989), Photosynthetic Oxygen Evolution: Changes in Magnetism of Water — Oxidizing Enzymes, J. Am. Chem. Soc., 111, 3221–3225.CrossRefGoogle Scholar
  34. 34.
    Boussac, A., Zimmermann, J.-L., Rutherford, A. W. and Lavergne, J. (1990), Histidine Oxidation in the Oxygen-Evolving Photosystem-II Enzyme, Nature, 347, 303–306.CrossRefGoogle Scholar
  35. 35.
    Penner-Hahn, J. E., Fronko, R. M., Pecoraro, V. L., Yocum, C. F., Betts, S. D. and Bowlby, N. R.(1990) Structural Characterization of the Manganese Sites in the Photosynthetic Oxygen Evolving Complex Using X-Ray Absorption-Spectroscopy, J. Am. Chem. Soc. 112, 2549–2557CrossRefGoogle Scholar
  36. 36.
    Jahns, P., Lavergne, J., Rappaport, F. and Junge, W. (1991), Stoichiometry of Proton Release during Photosynthetic Water Oxidation: A Reinterpretation of the Responses of Neutral Red Leads to a Non-integer Pattern, Biochim. Biophys. Acta 1057, 313–319.CrossRefGoogle Scholar
  37. 37.
    Dexheimer, S. L. and Klein, M. P.(1992) Detection of a Paramagnetic Intermediate in the S1 State of the Photosynthetic Oxyg en-Evolving Complex, J. Am. Chem. Soc. 114, 2821–2826.CrossRefGoogle Scholar
  38. 38.
    Koulougliotis, D., Hirsh, D. J. and Brudvig, G. W.(1992) The O2-Evolving Center of Photosystem II Is Diamagnetic in the S1 Resting State, J. Am. Chem. Soc. 114, 8322–8323.CrossRefGoogle Scholar
  39. 39.
    Ono, T.−a., Noguchi, T., Inoue, Y., Kusunoki, M., Matsushita, T. and Oyanagi, H.(1992) X-ray Detection of the Period-Four Cycling of the Manganese Cluster in Photosynthetic Water Oxidizing Enzyme, Science 258, 1335–1337CrossRefGoogle Scholar
  40. 40.
    a)Klein, M. P., Sauer, K. and Yachandra, V. K. Photosyn. Res. 1993, 38, 265. b)Liang, W., Latimer, M. J., Dau, H., Roelofs, T. A., Yachandra, V. K., Sauer, K. and Klein, M. P. (1994) Correlation Between Structure and Magnetic Spin State of the Manganese Cluster in the Oxygen Evolving Complex of Photosystem II in the S2 State Determination by X-Ray Absorption Spectroscopy, Biochemistry 33, 4923-4932Google Scholar
  41. 41.
    Wieghardt, K.(1989) The Active Sites in Manganese Containing Metalloproteins and Inorganic Model Complexes, Angew. Chem.-Inter. Edit. in English 28, 1153–1172Google Scholar
  42. 42.
    Vincent, J.B. and Christou, G. (1989), Higher Oxidation State Manganese Biomolecules, Adv. Inorg. Chem. Radiochem., 33, 197–257.CrossRefGoogle Scholar
  43. 43.
    Christou, G. (1989), Manganese Carboxylate Chemistry and Its Biological Relevance, Acc. Chem. Res., 22, 328–335CrossRefGoogle Scholar
  44. 44.
    Rardin, R. L., Bino, A., Poganiuch, P., Tolman, W. B., Liu, S. and Lippard, S. J.(1990), Synthesis and Characterization of the Linear Trinuclear Complexes [M3 II (O2CCH3)6 (biphme)2] M = Mn, Fe, Angew. Chem. Int. Ed. Engl., 29, 812CrossRefGoogle Scholar
  45. 45.
    Rardin, R. L., Poganiuch, P., Bino, A., Goldberg, D. P., Tolman, W. B., Liu, S. and Lippard, S. J.(1992) Synthesis and Characterization of Trinuclear Iron(II) and Manganese(II) Carboxylate Complexes. Structural Trends in Low Valent Iron and Manganese Carboxylates, J. Am. Chem. Soc., 114, 5240–5249.CrossRefGoogle Scholar
  46. 46.
    Kessissoglou, D. P., Butler, W. M. and Pecoraro, V. L.(1986) Structural and spectro-scopic Characterization of the Manganese(IV)Schiff-Base Complex Mn(saladhp)2 (saladhp=2-salicylideniminato-l, 3-dihydroxy-2-methyl-propane) J. Chem. Soc. Chem. Commun. 1253–1255Google Scholar
  47. 47.
    Kessissoglou, D. P., Li, X.-h., Butler, W. M. and Pecoraro, V. L.(1987) Mononuclear Manganese(IV) Complexes of Hydroxyl-Rich Schiff Base Ligands, Inorg. Chem. 26, 2487–2492CrossRefGoogle Scholar
  48. 48.
    Li, X-h., Kessissoglou, D. P., Kirk, M. L., Bender, C. and Pecoraro, V. L.(1988) Isolation of a mixed-Valence Trinuclear Manganese Complex Potentially Relevant to the Photosynthetic Oxygen-Evolving Complex, Inorg. Chem. 27, 1–3CrossRefGoogle Scholar
  49. 49.
    Kessissoglou, D. P., Kirk, M. L., Bender, C. A., Lah, M. S. and Pecoraro, V. L.(1989) A Bent Mixed-valence Manganese(III/II/III) Complex: A New Class of Trinuclear, Acetate Bridged Schiff’s Base Compounds Exhibiting a g=2 Multiline E.S.R. Signal, J. Chem. Soc., Chem. Commun. 84–86Google Scholar
  50. 50.
    Bonadies, J. A., Kirk, M. L., Lah, M. S., Kessissoglou, D. P., Hatfield, W. E. and Pecoraro, V. L.(1989) Structurally Diverse Manganese(III) Schiff Base Complexes:Chains, Dimers, and Cages, Inorg. Chem. 28, 2037–2044CrossRefGoogle Scholar
  51. 51.
    Kessissoglou, D. P., Butler, W. M. and Pecoraro, V. L.(1987) Characterization of Mono-and Binuclear Manganese(II)Schiff-Base Complexes with Metal-Disulfide Ligation, Inorg. Chem. 26, 495–503CrossRefGoogle Scholar
  52. 52.
    Kessissoglou, D. P., Kirk, M. L., Lah, M. S., Li, X.-h., Raptopoulou, C. A., Hatfield, W. E. and Pecoraro, V. L.(1992), Structural and Magnetic Characterization of Trinuclear, Mixed — Valence Manganese Acetates, Inorg. Chem. 31, 5424–5432CrossRefGoogle Scholar
  53. 53.
    Malamatari, D. A., Hitou, P., Hatzidimitriou, A. G., Inscore, F. E., Gourdon, A., Kirk, M. L. and Kessissoglou, D. P.(1995) First Example of a Mixed Valence Mn(III)Mn(II)Mn(III) Schiff-base Polymeric Complex having a Trimeric Repeat Unit; The Crystal Structure of [Mn3(Hsaladhp)2(acetato)2(5-Cl-salicylato)2]n, Inorg. Chem. 34, 2493–2494CrossRefGoogle Scholar
  54. 54.
    Kirk, M. L., Lah, M. S., Raptopoulou, C. A., Kessissoglou, D. P., Hatfield, W. E. and Pecoraro, V. L.(1991) Cationic Control of Spin Dimensionality in Infinite Chains of (Cation)2 [MnIII(salicylate)2(CH3OH)2][MnIII(salicylate)2], Inorg. Chem. 30, 3900–3908CrossRefGoogle Scholar
  55. 55.
    Larson, E. J, Haddy, A., Kirk, M. L., Sands, R., Hatfield, W. E. and Pecoraro, V. L.(1992), The Assymetric Mixed—Valent Complex [Mn(2-OH-3, 5-Cl2-SALPN)]2(THF)ClO4 Shows a Temperature—Dependent Interconversion between g = 2 Multiline and Low—Field EPR Signals, J. Am. Chem. Soc. 114, 6263–6265.CrossRefGoogle Scholar
  56. 56.
    Tangoulis, V., Malamatari, D. A., Soulti, K., Stergiou, V., Raptopoulou, C. P., Terzis, A., Kabanos, T. A. and Kessissoglou, D. P.(1996) ManganeseII/II/II and ManganeseII/II/II Trinuclear Compounds. Structure and solution behavior, Inorg. Chem., 35, 4974–4983CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • Dimitris P. Kessissoglou
    • 1
  1. 1.Department of General and Inorganic ChemistryAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations