Li+ Transport Properties in Perfused Neuronal Cells by 7Li NMR Spectroscopy

  • M. M. C. A. Castro
  • J. Nikolakopoulos
  • C. Zachariah
  • D. M. de Freitas
  • C. F. G. C. Geraldes
  • R. Ramasamy
Part of the NATO ASI Series book series (ASEN2, volume 26)


Lithium salts have been clinically used, for more than forty years, in the treatment of manic-depression or bipolar disease, as well as in other psychiatric and non-psychiatric disorders, such as depression, schizophrenia, hyperthyroidism, conditions caused by the Herpes simplex and AIDS virus and low blood cells counts associated with chemotherapy [1, 2]. In spite of the well recognized therapeutic effectiveness of lithium, the mechanism of action at the molecular and cellular level of the active species – the lithium ion, Li+ – is still unclear.


Neuroblastoma Cell Human Neuroblastoma Cell Line Shift Reagent Leak Pathway Microcarrier Bead 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jefferson, J.W., Greist, J.H., and Baudhuin, M. (1985) Lithium: Current Applications in Scieuce, Medicine and Technology, R.O. Bach (ed.), Wiley, New York, pp. 345–352.Google Scholar
  2. 2.
    Specter, S. Lancz, G., and Bach, R.O. (1990) Lithium ans virus infections, in R.O. Bach and V.S. Gallicchio (eds.). Lithium and Cell Physiology. Springer-Verlag, pp. 150–157.Google Scholar
  3. 3.
    Belmaker, R.H. (1981) Receptor, adenylate cyclase, depression, and lithium, Bioi. Psychiatry 16, 333 350.Google Scholar
  4. 4.
    Avissar, S. Schreiber, G., Danon, A., and Belmaker, R.H. (1988) Lithium inhibits adrenergic and cholinergic increases in GTP binding in rat cortex. Nature 31, 440–442.CrossRefGoogle Scholar
  5. 5.
    Hallcher, L.M., and Sherman, W.R. (1980) The effects of lithium ion and other agents on the activity of myoinositol-1-phosphatase from bovine brain. J.Biol.Chem. 255, 10896–10901.Google Scholar
  6. 6.
    Avissar, S. Murphy, D.L., Schreibr, G. (1991) Magnesium reversal of lithium inhibition of b-adrenergic and muscarinic receptor coupling to G protein. Biochem.Pharmacol. 41, 171–175.CrossRefGoogle Scholar
  7. 7.
    Metzler, H.L. (1991) Is there a specific membrane defect in bipolar disorders?. Biol.Psychiatry 30. 1071–1074.CrossRefGoogle Scholar
  8. 8.
    Espanol, M.T. Ramasamy, R., and Mota de Freitas, D. (1989) Measurement of lithium transport across human erythrocyte membranes by 7Li NMR spectroscopy, in D.A. Butterfield (ed.), Prog.Clin.Biol.Res., Alan R. liss, Inc., New York, vol. 292, pp. 33–43.Google Scholar
  9. 9.
    Mota de Freitas, D., Abraha, A. Rong, Q., Silberberg, J., Whang, W. Borge, G.F., and Elenz, E. (1994) Relationship between lithium ion transport and phospholipid composition in erythrocytes from bipolar patients receiving lithium carbonate. Lithium 5, 29–39.Google Scholar
  10. 10.
    Rong, Q., Espanol, M.T., Mota de Freitas, D., and Geraldes, C.F.G.C. (1993) 7Li NMR realxation study of Li+ binding in human erythrocytes. Biochemistry 32, 13490–13498.CrossRefGoogle Scholar
  11. 11.
    Mota de Freitas, D. (1993) Alkali Metal NMR, in J.F. Riordan and B.L. Vallee (eds.), Methods Enzymol. 227, 78–106.Google Scholar
  12. 12.
    Ramasamy, R., Mota de Freitas, D., Jones, W., Wezeman, F., Labotka, R.J., and Geraldes, C.F.G.C. (1990) Effects of negatively charged shift reagents on red blood cells morphology, Li+ transport and membrane potential, Inorg.Chem. 29, 3979–3985.CrossRefGoogle Scholar
  13. 13.
    Seshan, V. Germann, M.J., Preisig, P., Malloy, C.R., Sherry, A.D., and Bansal, N. (1995) TmDOTP5− as a 23Na shift reagent for the in vivo rat kidney. Magn.Reson.Med. 34, 25–31.CrossRefGoogle Scholar
  14. 14.
    Gadian, D.G. (1982) NMR aud its applications to living systems, Clarendon Press, Oxford, pp. 109–122.Google Scholar
  15. 15.
    Ehrlich, B.E., Russell, J.M. (1984) Lithium transport across squid axon membrane, Brain Res. 311, 141–143CrossRefGoogle Scholar
  16. 16.
    Biedler, J.L. Helson, L., and Spengler, B.A. (1973) Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture, Cancer Res. 22, 2643–2652.Google Scholar
  17. 17.
    Richelson, E. (1977) Lithium ion entry through the sodium channel of cultured mouse neuroblastoma cells: a biochemical study, Science 196, 1001–1002.CrossRefGoogle Scholar
  18. 18.
    Szentistvanyi, I., Janka, Z., Joo, F., Rimanoczy, A. Juhasz, A., and Latzkovitz, L. (1979) Na-dependent Li+transport in primary nerve cell cultures, Neuroscience Lett. 13, 157–161.CrossRefGoogle Scholar
  19. 19.
    Bachelard, H., and Badar-Goffer, R. (1993) NMR spectroscopy in neurochemistry, J.Neurochem. 61, 412–429.CrossRefGoogle Scholar
  20. 20.
    Schanne, F.A.X. Moskal, J.R., and Gupta, R.K. (1989) Effect of lead on intracellular free calcium ion concentration in a presynaptic neuronal model − 19F NMR study on NG 108-15 cells, Brain Res. 503, 308–311.CrossRefGoogle Scholar
  21. 21.
    Egan, W.M. (1987) The use of perfusion systems for nuclear magnetic resonance studies of cells, in R.K. Gupta (ed.), NMR Spectroscopy of Cells and Organisms, CRC Press, Boca Raton, vol.11, pp. 135–161Google Scholar
  22. 22.
    Kaplan, O., Van Zijl, P.C.M., and Cohen, J.S. (1992) NMR studies of metabolism of cells and perfused organs, in P. Diehl, E. Fluck, H. Gunther, R. Kosfeld, and J. Seelig (eds.), NMR: Basic Principles and Progress, vol. 28, pp. 3–52.Google Scholar
  23. 23.
    Swergold, B.S. (1992) NMR spectroscopy of cells, Annu.Rev.Physol. 54, 775–798.CrossRefGoogle Scholar
  24. 24.
    Zachariah, C., Nikolakolpoulos, J., Mota de Freitas, D., Stubbs, E.B., Castro, M.M.C.A., Geraldes, C.F.G.C., Lima, M.C.P., Oliveira, C.R., and Ramasamy, R. (1996) 7Li NMR study of lithium ion transport in perfused human neuroblastoma cells, in J.N. Birch and V.S. Gallicchio (eds.), Lithium: Biochemical and Clinical Advances, in press.Google Scholar
  25. 25.
    Zachariah, C., Mota de Freitas, D., Castro, M.M.C.A., Geraldes, C.F.G.C. Lima, M.C.P. Oliveira, C.R. (1995) The use of microcarrier beads in ion transport NMR studies of perfused cells, J.Magn.Reson. B108, 81–85.Google Scholar
  26. 26.
    Nikolakolpoulos, J., Zachariah, C., Mota de Freitas, D., and Geraldes, C.F.G.C. (1996) Comparison of the use of gel threads and microcarrier beads in Li+ transport studies of human neuroblastoma SH-SY 5Y cells. Inorg.Chim.Acta, in press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • M. M. C. A. Castro
    • 1
  • J. Nikolakopoulos
    • 2
  • C. Zachariah
    • 2
  • D. M. de Freitas
    • 2
  • C. F. G. C. Geraldes
    • 1
  • R. Ramasamy
    • 3
  1. 1.Biochemistry DepartmentUniversity of CoimbraCoimbraPortugal
  2. 2.Chemistry DepartmentLoyola University of ChicagoChicagoUSA
  3. 3.Department of Cardiovascular MedicineUC DavisUSA

Personalised recommendations