Active Efflux Mechanisms for Cellular Resistance

  • A. Garnier-Suillerot
Part of the NATO ASI Series book series (ASEN2, volume 26)


Cells have the general capacity to develop resistance to toxic elements which include compounds present in polluted environment as well as antibiotics used in chemotherapy for the treatment of cancer or in diseases related to the presence of parasitic protozoa, bacteria, fungi etc.


Multidrug Resistance Cystic Fibrosis Transmembrane Conductance Regulator Visceral Leishmaniasis Multidrug Resistance Associate Protein Heavy Metal Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Silver, S. and Walderhaug, M. (1992) Regulation of chromosomal and plasmid cation and anion transport systems. Microbiol. Rev., 56, 1–33Google Scholar
  2. 2.
    Dano, K. (1973) Active outward transport of daunomycin in resistant Ehrlich ascites tumors cells. Biochim.Biophys. Acta. 323, 466–483CrossRefGoogle Scholar
  3. 3.
    Higgins, CF. (1992) ABC transporters — From microorganisms to man. Anuu. Rev. Cell. Biol. 8, 67–113CrossRefGoogle Scholar
  4. 4.
    Schinkel, A.H., Roelofs, M.E.M., and Borst, P. (1991) Characterization of the human MDR3 P-glycoprotein and its recognition by P-glycoprotein-specific monoclonal antobodies. Cancer Res. 51, 2628–2635Google Scholar
  5. 5.
    Gottesman, M.M., and Pastan, I. (1993) Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu. Rev. Biochem. 62, 385–427CrossRefGoogle Scholar
  6. 6.
    Bradley, G., Juliano, R.L, and Ling, V. (1988) Mechanism of multidrug resistance. Biochim. Biophys. Acta. 948, 87–128Google Scholar
  7. 7.
    Cole, S.P.C., Sparks, K.E., Fraser, K., Loe, D.W., Grant, C.E., Wilson, G.M. and Deeley, R.G. (1994) Pharmacological characterization of multidrug resistant MRP-transfected human tumor cells. Cancer Res. 54, 5902–5910Google Scholar
  8. 8.
    Zaman, G.J.R. Lankelma, J., van Tellingen, O., Beijnen, J., Dekker, H., Paulusma, C., Oude Elferink, R.P.J., Baas, F. and Borst, P. (1995) Role of glutathione in the export of compounds from cells by the multidrug-resistance-associated protein. Proc. Natl. Acad. Sci. USA 92, 7690–7694CrossRefGoogle Scholar
  9. 9.
    Higgins, C.F., Hiles, I.D. Salmond, G.P.C, Gill, D.R., Downie, J.A. et al. (1986) A family of related ATP binding subunits coupled to many distinct biological processes in bacteria Nature 323, 448–450CrossRefGoogle Scholar
  10. 10.
    Hyde, S.C, Emsley, P., Hartshorn, M, Mimmack, M.M., Gileadi, U., et al (1990) Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport. Nature 346, 362–365CrossRefGoogle Scholar
  11. 11.
    Mimura, C.S. Admon, A., Kurt, K.A., and Ames, G.F.L. (1990) The nucleotide-binding site of HisP, a membrane protein of the histidine permease. Identification of amino acid residues photoaffinity labelled by 8-azido ATP. J. Biol. Chem. 265, 19535–19542Google Scholar
  12. 12.
    Chen, C-J. Chin, J.E., Ueda, K., Clark, D. P., Pastan, L. et al. (1986). Internal duplication and homology with bacterial transport proteins in the mdrl (P-glycoprotein) gene from multidrug-resistant human cells. Cell 47, 381–389CrossRefGoogle Scholar
  13. 13.
    Gros, P., Croop, J., and Housman, D. (1986) Mammalian multidrug resistance gene: complete cDNA sequence indicating strong homology to bacterial transport proteins. Cell. 47, 371–80CrossRefGoogle Scholar
  14. 14.
    Higgins, C.F., Hiles, L.D., Whalley, K., and Jamieson, D.J. (1985) Nucleotide binding by membrane components of bacterial periplasmic binding protein-dependent transport systems. EMBO J. 4, 1033–1040Google Scholar
  15. 15.
    Azzaria, M., Schurr, E. and Gros, P. (1989) Discrete mutations introduced in the predicted nucleotide-binding sites of the mdr 1 gene abolish its ability to confer multidrug resistance. Mol. Cell. Biol. 9, 5289–5297Google Scholar
  16. 16.
    Berkower, C, and Michaelis, S. (1991) Mutational analysis of the yeast a-factor transporter STE6, a member of the ATP binding cassette (ABC) protein superfamily. EMBO J. 10, 3777–785Google Scholar
  17. 17.
    Mimmack, M.L., Gallagher, M.P., Hyde, S.C., Pearce, S.R., Booth, L.R., and Higgins, C.F. (1989) Energy-coupling to periplasmic binding protein-dependent transport systems: Stoichiometry of ATP hydrolysis during transport. Proc. Natl. Acad. Sci USA 86, 8257–261CrossRefGoogle Scholar
  18. 18.
    Horio, M., Gottesman, MM. and Pastan, I. (1988) ATP-dependent transport of vinblastine in vesicles from human multidrug resistant cells. Proc. Natl. Acad. Sci. USA 85, 3580–584CrossRefGoogle Scholar
  19. 19.
    Ames, G. F.L., Nikaido, K, Groarke, J, and Petithory, J. (1989) Reconstitution of periplasmic transport in inside-out membrane vesicles: energization by ATP. J. Biol. Chem. 264, 3998–4002Google Scholar
  20. 20.
    Buschman, F., and Gros,, P. (1991) Functional analysis of chimeric genes obtained by exchanging homologous domains of mouse mdr 1 and mdr 2 genes. Mol. Cell. Biol. 11, 595–603Google Scholar
  21. 21.
    Lee, T.C., Oshimara, M., and Barrett, J.C. (1985) Comparison of arsenic induced cell transformation, cytotoxoticity, mutation and cytogenetic effects in syrian hamster embryo cells in culture. Carcinogenesis 6, 1421–1426CrossRefGoogle Scholar
  22. 22.
    Nakamuro, K., and Sayato, Y. (1981) Comparative studies of chromosomal aberrations induced by trivaient and pentavalent arsenic. Mutaat. Res. 88, 73–80CrossRefGoogle Scholar
  23. 23.
    Pershagen, G. (1985) Lung cancer mortality among men living near arsenic-emitting smelters. Am. J. Epidemiol. 122, 684–694Google Scholar
  24. 24.
    Schneidman, D. and Belizaire, R. (1986) Arsenic exposure followed by the development of dermatofibrosarcoma protuberans. Cancer 58, 1585–1587CrossRefGoogle Scholar
  25. 25.
    Bates, M.N., Smith, A.H., and Hopenhayn-Rich, C. (1992) Arsenic ingestion and internal cancers: a review. Am. J. Epidemiol. 135, 462–476Google Scholar
  26. 26.
    Nielsen, F.H. (1991) Nutritional requirements for boron, silicon, vanadium, nickel and arsenic: current knowledge and speculation. FASEB J. 5, 2661–266Google Scholar
  27. 27.
    World Health Organization (1981) Environmental Health Criteria Arsenic. Vol 16. United Nations Environment Programm International Labor Organization and World Health Organization Geneva.Google Scholar
  28. 28.
    Edelmau, P. (1990) Environmental and work place contamination in the semiconductor industry implications for future health of the work force and community. Environ. Health Perspect. 86, 291–295CrossRefGoogle Scholar
  29. 29.
    Nakamuro, K. and Sayato, Y. (1981) Comparative studies of chromosomal aberrations induced by trivaient and pentavalent arsenic. Mutat. Res. 88, 73–80CrossRefGoogle Scholar
  30. 30.
    Klemperer, N.S., and Pickart, C.M. (1989) Arsenite inhibits two steps in the ubiquitin-dependent proteolytic pathway. J. Biol. Chem1. 264, 19245–19252Google Scholar
  31. 31.
    Kenney, L.J., and Kaplan, J.H. (1988) Arsenate substitutes for phosphate in the human red cell sodium pump and anion exchanger. J. Biol. Chem. 263, 7954–7960Google Scholar
  32. 32.
    Silver, S., and Misra, T.K. (1988) Plasmid-mediated heavy metal resistance. Annu.Res. Microbiol. 42, 717–743CrossRefGoogle Scholar
  33. 33.
    Silver, S. Nucifora, G., Chu, L., and Misra, T.K. (1989) Bacterial resistance ATPases: Primary pumps for exporting toxic cations and anions. Trends Biochem. Sci 14, 76–80CrossRefGoogle Scholar
  34. 34.
    Anderson, G.L., Williams, J., and Hille, R. (1992) The purification and characterization of arsenite oxidase from Alcaligenes faecalis. a molybdenum-containing hydroxylase. J. Biol. Chem. 267, 23674–23682Google Scholar
  35. 35.
    Rauser, W.E. (1990) Phytochelatins. Annu. Rev. Biochem. 59, 61–86CrossRefGoogle Scholar
  36. 36.
    Hamer, D., Thiele, DJ., and Lemontt, J.E. (1985) Function and autoregulation of yeast copperthionein. Science 228, 685–690CrossRefGoogle Scholar
  37. 37.
    Masters, B.A., Kelly, E.J., Quaife, C.J., Brinster, R.L., and Palmiter, R.D.(1994) Targeted disruption of metallothionein I and II genes increses sensitivity to cadmium. Proc. Natl. Acad. Sci. USA 91, 584–588CrossRefGoogle Scholar
  38. 38.
    Dey, S. Ouellette, M., Lightbody, J., Papadopoulou, B., and Rosen, B.P. (1996) An ATP-dependent As(III)-glutathione transport system in membrane vesicles of Leishmania tarentolae. Proc. Natl. Acad. Sci. USA 93, 2192–2197CrossRefGoogle Scholar
  39. 39.
    Ishikawa, T. (1989) ATP/Mg2+-dependent cardiac transport system for glutathione S-conjugates. A study using rat heart sarcolemma vesicle. Biol. Chem. 264, 17343–17348Google Scholar
  40. 40.
    Ji, G., and Silver, S. (1992) Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pI258. Proc. Natl. Acad. Sci. USA 89, 9474–9478CrossRefGoogle Scholar
  41. 41.
    Gladysheva, T.B., Oden, K.L., and Rosen, B.P. (1994) Properties of the arsenate reductase of plasmid R773. Biochemistry 33, 7287–7293CrossRefGoogle Scholar
  42. 42.
    Cole, S.P.C., Bhardwaj, G., Gerlach, J.H., Mackie, J.E., Grant, C.E., Almquist, K.C., Stewart, A.J., Kurz, E.U., Duncan, A.M.V., and Deeley, R.G. (1992) Overexpression of a transporter gene in a multidrug-resistant human lung cell line. Science 258, 1650–1654CrossRefGoogle Scholar
  43. 43.
    Scheper, R.J., Broxterman, H.J., Scheffer, G.L., Kaaijk, P. Dalton, W.S., van Heijningen, H.M., van Kalken, C.K., Slovak, M.L., de Vries, E.G.E., van der Valk, P., Meijer, C.J.L.M., and Pinedo, H.M. (1993) Overexpression of a M r 110, 000 vesicular protein in non-P-glycoprotein-mediated multidrug resistance. Cancer Res. 53, 1475–1479Google Scholar
  44. 44.
    Safa, A.R. (1992) Photoaffinity labeling of P-glycoprotein in multidrug-resistant cells. Cancer Invest. 10, 295–305CrossRefGoogle Scholar
  45. 45.
    Spoelstra, E.C., Westerhoff, H.V., Dekker, H., and Lankelnia, J. (1992) Kinetics of daunorubicin transport by P-glycoprotein of intact cancer cells. Eur. J. Biochem. 207, 567–579CrossRefGoogle Scholar
  46. 46.
    Mankhetkorn, S., Dubru, F., Hesschenbrouck, J., Fiallo, M., and Garnier-Suillerot, A. (1996) Relation among the resistance factor, kinetics of uptake, and kinetics of the P-glycoprotein-mediated efflux of daunorubicin, 8-(S)-fluoroidarubicin, and idarubicin in multidrug-resistant K562 cells. Mol. Pharmacol. 49, 532–539Google Scholar
  47. 47.
    Urbatsch, I.L., Sankara, B., Bhagat, S., and Senior, A.E. (1995) Both P-glycoprotein nucleotide-binding sites are catalytically active. J. Biol. Chem. 270, 26956–26961CrossRefGoogle Scholar
  48. 48.
    Al-Shawi, M.K., Urbatsch, I.L., and Senior, A.E. (1994) Covalent inhibitors of P-glycoprotein ATPase activity. J. Biol. Chem 269, 8986–8992Google Scholar
  49. 49.
    Loo, T.W., and Clarke, D.M. (1994) Reconstitution of drug-stimulated ATP-ase activity following co-expression of each half of human P-glycoprotein as separate polypeptides. J. Biol. Chem. 269, 7750–7755Google Scholar
  50. 50.
    Eytan, G.D., Regev, R., and Assaraf, Y.G. (1996) Functional reconstitution of P-glycoprotein reveals an apparent near stoichiometric drug transport to ATP hydrolysis. 271, 3172–3178Google Scholar
  51. 51.
    Jedlitschky, G., Leier, I., Bucholz, U., Center, M., and Keppler, D. (1994) ATP-dependent transport of glutathione S-conjugates by the multidrug resistance-associated protein. Cancer Res. 54, 4833–36Google Scholar
  52. 52.
    Leier, I., Jedlitschky, G., Buchholz, U., and Keppler, D., (1994) Characterization of the ATP-dependent leukotriene C4, export carrier in mastocytoma cells. Eur. J. Biochem. 220, 599–606CrossRefGoogle Scholar
  53. 53.
    Müller, M., Meijer, C., Zaman, G.J.R., Borst, P., Scheper, R.J. et al. (1994) Overexpression of the multidrug resistance associated protein (MRP) gene results in increased ATP-dependent glutathione S-conjugate transport. Proc. Natl. Acad. Sci. 91, 13033–13037CrossRefGoogle Scholar
  54. 54.
    Oude Elferink, R.P.J., Ottenhof, R. Liefting, W., De Haan, J., and Jansen, P.L.M., (1989) Hepatobiliary transport of glutathioue and glutathione conjugate in rats with hereditary hyperbilirubinemia. J. Clin. Invest 84, 476–483CrossRefGoogle Scholar
  55. 55.
    Heijn, M., Oude Elferink, R.P.J., and Jansen, P.L.M. (1992) ATP-dependent multispecific organic anion transport system in rat erythrocyte membrane vesicles. Am. J. Physiol. 262, C104–10Google Scholar
  56. 56.
    Ishikawa, T. (1992) The ATP-dependent gultathione S-conjugate export pump. Trends Biol. Sci. 17, 463–68CrossRefGoogle Scholar
  57. 57.
    Zaman, G.J., Flens, M.J., van Leusden, M.R., de Haas, M., Mulder, H.S., Lankelma, J. et al. (1994) The human multidrug resistance-associated protein MRP is a plasma membrane drug-efflux pump. Proc. Natl. Acad. Sci. USA 91, 8822–8826CrossRefGoogle Scholar
  58. 58.
    Leier, J., Jedlitschky, G., Buchholz, U., Cole, S.P., Deeley, R.G., and Keppler, D. (1994) The MRP gene encodes an ATP-dependent export pump for leukotriene C4 and structurally related conjugates. J. Biol. Chem. 269, 27807–27810Google Scholar
  59. 59.
    Feller, N., Broxterman, H.J., Wahrer, D.C., and Pinedo, H.M. (1995) ATP-dependent efflux of calcein by the multidrug resistance protein (MRP): no inhibition by intracellular glutathione depletion. FEBS Lett. 368, 385–388.CrossRefGoogle Scholar
  60. 60.
    Versantvooft, C.H., Broxterman, H.J., Bagrij, T., Scheper, R.J., and Twentyman P.R. (1995) Regulation by glutathione of drug transport in tnultidrug-resistant human lung tumour cell lines overexpressing multidrug resistance-associated protein. Br. J. Cancer. 72, 82–89CrossRefGoogle Scholar
  61. 61.
    Timmer-Bosscha, H. Timmer, A., Meijer, C., de Vries, E.G.E., de Jong. B. Oosterhuis, J.W., and Mulder, N.H. (1993) cis-dianiminedichloroplatinum (II) resistance in vitro and in vivo in human embryonal carcinoma cells. Cancer Res. 53, 5707–5713Google Scholar
  62. 62.
    Andrews, P.A., and Howell, S.B. (1990) Cellular pharmacology of cisplatin: perspectives on mechanisms of acquired resistance. Cancer Cells (Cold Spring Harbor). 2, 35–43Google Scholar
  63. 63.
    Scanlon, K.J. Kashani-Sabet, M., Miyachi, H., Sowres, L.C., and Rossi, J. (1989) Molecular basis of cisplatin resistance in human carcinomas: model systems and patients. Anticancer Res. 9. 1301–1312Google Scholar
  64. 64.
    Ishikawa, T., Wright, C.D., and Ishizuka, H. (1994) GS-X pump is functionally overexpressed in cis-diamminedichloroplatinum (II)-resistant human leukemia HL-60 cells and down-regulated by cell differentiation. J. Biol. Chem. 269, 29085–29093Google Scholar
  65. 65.
    Ishikawa, T., and Ali-Osman. F. (1993) Glutathione-associated cis-diamminedichloroplatinum(II) metabolism and ATP-dependent efflux from leukemia cells. Molecular characterization of glutathione-platinum complex and its biological significance. J. Biol. Chem. 268, 20116–21125Google Scholar
  66. 66.
    Delmon-moingeon, L., Piwnica-Worms, D., Van den Abbele, A.D., Holman, B.L., Davison, A., and Jones, A.G.(1990) Uptake of the cation hexakis (2-inethoxyisobutylisonitrile)-technetium-99m by human carcinoma cells lines in vitro. Cancer Res. 50, 2198–2202Google Scholar
  67. 67.
    Maublant, J.G., Zhang, Z., Rapp, M., Michelot, J., and Veyre, A. (1993) In vitro uptake of technetium 99m-teboroxime in carcinoma cell lines and normal cells: comparison with technetium-99m-sestamibi and thallium-201. J. Nucl. Med. 34, 1949–1952Google Scholar
  68. 68.
    Piwnica-Worms. D. Chiu, M.L., Budding, M., Kronauge, J.F., Kramer, R.A., and Groop, J.M. (1993) Functional imaging of multidrug-resistant P-glycoprotein with an organotechnetium complex. Cancer Res. 53, 977–983Google Scholar
  69. 69.
    Piwnica-Worms, D., Rao, V.V., Kronauge, J.F., and Croop, J.M. (1995) Characterization of multidrug resistance P-glycoprotein transport function with an organotechnetium cation. Biochemistry 34, 12210–12220CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • A. Garnier-Suillerot
    • 1
  1. 1.Laboratoire de Physico chimie Biomoléculaire et Cellulaire (URA CNRS 2056)UFR Léonard de Vinci, Université Paris NordBobignyFrance

Personalised recommendations