Advertisement

Approaches to the Biological Monitoring of Chromium(VI) Exposed Individuals

  • A. Kortenkamp
Chapter
  • 254 Downloads
Part of the NATO ASI Series book series (ASEN2, volume 26)

Abstract

A little more than hundred years ago, David Newman of Glasgow Royal Infirmary published a report on a chrome pigment worker with adeno-carcinoma of the upper respiratory tract [1]. This was the first documented evidence to suggest that exposure to chromium(VI) compounds might be associated with cancers of the airways. Since then, chromium(VI) has attracted much attention in toxicology. Today, the carcinogenicity of chromium(VI), and its potential to cause allergies in humans, are well established [2].

Keywords

Internal Exposure Stainless Steel Welder Unexposed Control Chromium Level Chromium Plater 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Newman, D. (1890) A case of adeno-carcinoma of the left inferior turbinated body, and the perforation of the nasal septum, in the person of a worker in chrome pigments, Glasgow Med. J. 33, 469–470.Google Scholar
  2. 2.
    IARC (1990) Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, vol 49, Chromium, Nickel and Welding, International Agency on the Research of Cancer, Lyon.Google Scholar
  3. 3.
    National Institute for Occupational Safety and Health (1977) National Occupational Hazard Survey 1972–1974, Cincinnati, USA.Google Scholar
  4. 4.
    Wogan, G. (1992) Molecular epidemiology in cancer risk assessment and prevention: Recent progress and avenues for future research, Environ. Health Perspect. 98, 167–178.CrossRefGoogle Scholar
  5. 5.
    Gylseth, B., Gunderson, N., and Langard, S. (1977) Evaluation of chromium exposure based on a simplified method for urinary chromium determination, Scand. J. Work Environ. Health 3, 28–31.CrossRefGoogle Scholar
  6. 6.
    Tola, S., Kilpio, J., Virtamo, M. and Haapa, K. (1977) Urinary chromium as an indicator of the exposure to welders on chromium, Scand. J. Work Environ. Health 3, 192–202.CrossRefGoogle Scholar
  7. 7.
    Mutti, A., Cavatorta, A., Pedroni, C., Borgi, A., Giaroli, C., and Franchini, I. (1979) The role of chromium accumulation in the relationship between airborne and urinary chromium in welders, Int. Arch. Occup. Environ. Health 43, 85–91.CrossRefGoogle Scholar
  8. 8.
    Fleischer, M., and Schaller, K. (1980) Chrom im Harn, in D. Henschler (ed.), Analytische Methoden zur Prófung gesundheitsschδdlicher Arbeitsstoffe. Deutsche Forschungsgemeinschaft, Verlag Chemie, Weinheim.Google Scholar
  9. 9.
    Kalliomaki, P.L., Rahkonen, E., Vaaranen, V., Kalliomaki, K., and Aittoniemi, K. (1981) Lung-retained contaminants, urinary chromium and nickel among stainless steel welders, Int. Arch. Occup. Environ. Health 49. 67–75.CrossRefGoogle Scholar
  10. 10.
    Lewalter, J., Korallus, U., Harzdorf, C., and Weidemann, H. (1985) Chromium bond detection in isolated erythrocytes: a new principle of biological monitoring of exposure to hexavalent chromium, Int. Arch. Occup. Environ. Health 55, 305–318.CrossRefGoogle Scholar
  11. 11.
    Angerer, J., Amin, W., Heinrich-Ramm, R., Szadowski, D., and Lehnert, G. (1987) Occupational chronic exposure to metals, I. Chromium exposure of stainless steel welders-biological monitoring, Int. Arch. Occup. Environ. Health 59, 503–512.CrossRefGoogle Scholar
  12. 12.
    Gray, J.S. and Sterling, K. (1950) The tagging of red cells and plasma protein, with radioactive chromium, J. Clin. Invest. 29, 1604–1613.CrossRefGoogle Scholar
  13. 13.
    Kortenkamp, A., Beyersmann, D., and O’Brien, P. (1987) Uptake of chromium(III) complexes by erythrocytes, Toxicol. Environm. Chem. 14, 23–32.CrossRefGoogle Scholar
  14. 14.
    Araki, S. and Aono, H. (1989) Effects of water restriction and water loading on daily urinary excretion of heavy metals and organic substances in metal workers, Br. J. Ind. Med. 46, 389–392.Google Scholar
  15. 15.
    Strindsklev, I.C., Hemmingsen, B., Karlsen, J.T., Schaller, K.H., Raithel, H.J., and Langard, S. (1993) Biologic monitoring of chromium and nickel among stainless steel welders using the manual metal arc method, Int. Arch. Occup. Environ. Health 65, 209–219.CrossRefGoogle Scholar
  16. 16.
    Bukowski, J.A., Goldstein, M.D., Korn, L.R., and Johnson, B.B. (1991) Biological markers in chromium exposure assessment: confounding variables, Arch. Environ. Health 46, 230–236.CrossRefGoogle Scholar
  17. 17.
    Gao, M., Levy, L.S., Faux, S.P., Aw, CT., Braithwaite, R.A., and Brown, S.S. (1994) The use of molecular epidemiological techniques in a pilot study on workers exposed to chromium, Occup. Environ. Medicine 51, 663–668.CrossRefGoogle Scholar
  18. 18.
    Bigaliev, A.B., Elemesova, M.S., and Turebaev, M.N. (1977) Evaluation of the mutagenic activity of chromium compounds, Gig. Tr. Prof. Zabol. 6, 37–40.Google Scholar
  19. 19.
    Stella, M., Montaldi, A., Rossi, R., Rossi, G., and Levis, A.G. (1982) Clastogenic effects of chromium on human lymphocytes in vivo and in vitro, Mutat. Res. 101, 151–164.CrossRefGoogle Scholar
  20. 20.
    Sarto, F., Cominato, I., Bianchi, V., and Levis, A.G. (1982) Increased incidence of chromosomal aberrations and sister chromatid exchanges in workers exposed to chromic acid in electroplating factories, Carcinogenesis 3, 1011–1016.CrossRefGoogle Scholar
  21. 21.
    Nagaya, T. (1986) No increase in sister-chromatid exchange frequency in lymphocytes of chromium platers, Mutat. Res. 170, 129–132.CrossRefGoogle Scholar
  22. 22.
    Choi, Y.J., Kim, Y.W., and Cha, C. W. (1987) A study on sister chromatid exchanges in lymphocytes in some metal plating workers, Korea Univ. Med. J. 24, 249–257.Google Scholar
  23. 23.
    Sbrana, I., Caretto, S., Lascialfari, D., Rossi, G., Marchi, M., and Loprieno, N. (1990) Chromosomal monitoring of chromium-exposed workers, Mutat. Res. 242, 305–312.CrossRefGoogle Scholar
  24. 24.
    Nagaya, T., Ishikawa, N., Hata, H., and Otobe, T. (1991) Sister-chromatid exchanges in lymphocytes from 12 chromium platers: a 5-year follw-up study, Toxicology Letters 58, 329–335.CrossRefGoogle Scholar
  25. 25.
    Ashby, J. and Richardson, C.R. (1985) Tabulation and assessment of 113 human surveillance cytogenetic studies conducted between 1965 and 1984, Mutat. Res. 154, 111–133.CrossRefGoogle Scholar
  26. 26.
    Littorin, M., Hoegstedt, B., Stroembaeck, B., Karlsson, A., Welinder, H., Mitelman, F., and Skerfving, S. (1983) No cytogenetic effects in lymphocytes of stainless steel welders, Scand. J. Work Environ. Health 9 259–264.CrossRefGoogle Scholar
  27. 27.
    Husgafvel-Purisainen, K., Kalliomδki, P.L., and Sorsa, M. (1982) A chromosome study among stainless steel welders, J. Occup. Med. 24, 762–766.Google Scholar
  28. 28.
    Koshi, K., Yagami, T., and Nakanishi, Y. (1984) Cytogenetic analysis of peripheral blood lymphocytes from stainless steel welders, Ind. Health 22, 305–318.CrossRefGoogle Scholar
  29. 29.
    Popp, W., Vahrenholz, C., Schmieding, W., Krcwet, E., and Norpoth, K. (1991) Investigations of the frequency of DNA strand breakage and cross-linking and of sister chromatid exchange in the lymphocytes of electric welders exposed to chromium-and nickel-containing fumes, Int. Arch. Occup. Environ. Health 63, 115–120.CrossRefGoogle Scholar
  30. 30.
    Knudsen, L.E., Boisen, T., Christensen, J.M., Jelnes, J.E. Jensen, G.E., Jensen, J.C., Lundgren, K., Lundsteen, C., Pedersen, B., Wassermann, K., Wilhardt, P., Wulf, H.C., and Zebitz, U. (1992) Biomonitoring of genotoxic exposure among stainless steel welders, Mutat. Res. 279, 129–143.CrossRefGoogle Scholar
  31. 31.
    Jelmert, O., Hansteen, I.L., and Langard, S. (1994) Chromosome damage in lymphocytes of stainless steel welders related to past and current exposure to manual metal arc welding fumes, Mutat. Res. 320, 223–233.CrossRefGoogle Scholar
  32. 32.
    Zhitkovich, A., Lukanova, A., Popov, T., Taioli, E., Cohen, H., Costa, M., and Toniolo, P. (1996) DNA-protein crosslinks in peripheral lymphocytes of individuals exposed to hexavalcnt chromium compounds, Biomarkers 1 (in press).Google Scholar
  33. 33.
    Coogan, T., Squibb, K., Motz, J., Kinney, P., and Costa, M. (1991) Distribution of chromium within cells of the blood, Tox. Appl. Pharmacol. 108, 157–166.CrossRefGoogle Scholar
  34. 34.
    Buttner, B. and Beyersmann, D. (1985) Modification of the erythrocyte anion carrier by chromate, Xenobiotica 15, 735–741.CrossRefGoogle Scholar
  35. 35.
    Hyodo, K., Suzuki, S., Euruya, N., and Meshizuka, K. (1980) An analysis of chromium, copper and zinc in organs of a chromate worker, Int. Arch. Occup. Environ. Health 46, 141–150.CrossRefGoogle Scholar
  36. 36.
    Tsuneta, Y., Ohsaki, Y., Kimura, K., Mikami, H., Abe, S., and Murao, M. (1980) Chromium content of lungs of chromate workers with lung cancer, Thorax, 35, 294–297.CrossRefGoogle Scholar
  37. 37.
    Kishi, R., Tarumi, T., Uchino, E., and Miyake, H. (1987) Chromium content of organs of chromate workers with lung cancer, Am. J. Ind. Med. 11, 67–74.CrossRefGoogle Scholar
  38. 38.
    Raithel, H.J., Schaller, K.M., Kraus, T., and Lehnert, G. (1993) Biomonitoring of nickel and chromium in human pulmonary tissue, Int. Arch. Occup. Environ. Health 65, S197-S200.Google Scholar
  39. 39.
    Paako, P., Kokkonen, P., Antitila, S., and Kalliomaki, P.L. (1989) Cadmium and chromium as markers of smoking in human lung tissue, Environ. Res. 49, 197–207.CrossRefGoogle Scholar
  40. 40.
    Kollmeier, H., Seemann, J.W., Rothe, G., Móller, K.M., and Wittig, P. (1990) Age, sex, and region adjusted concentrations of chromium and nickel in lung tissue, Br. J. Ind. Med. 47, 682–687.Google Scholar
  41. 41.
    Westennann, J. and Pabst, R. (1990) Lymphocyte subsets in the blood: a diagnostic window on the lymphoid system?, Immunology Today 11, 406–410.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • A. Kortenkamp
    • 1
  1. 1.Department of ToxicologyThe School of Pharmacy, University of LondonLondonUK

Personalised recommendations