Advertisement

Design of Proteins with ATCUN Motif which Specifically Cleave DNA

  • B. Sarkar
Chapter
Part of the NATO ASI Series book series (ASEN2, volume 26)

Abstract

The design of proteins for sequence specific cleavage of DNA can potentially serve a number of uses such as the creation of artificial restriction endonucleases. Such artificial endonucleases would be extremely useful in genomic mapping and also to chemically excise aberrant DNA sequences.

Keywords

Human Serum Albumin Leucine Zipper Transport Site Leucine Zipper Domain Leucine Zipper Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Appleton, D.W., and Sarkar, B. (1971) The absence of specific copper(II)-binding in dog albumin: A comparative study of human and dog albumins. J. Biol. Chem. 246, 5040–5046.Google Scholar
  2. 2.
    Dixon, J.W., and Sarkar, B. (1974) Isolation, amino acid sequence and copper(II)-binding properties of peptide (1-24) of dog serum albumin. J. Biol. Chem. 249, 5872–5877.Google Scholar
  3. 3.
    Iyer, K.S.N., Lau, S., Laurie, S.H., and Sarkar, B. (1978) Synthesis of the native copper(II)-transport site of human serum albumin and its copper(II)-binding properties. Biochem. J. 169, 61–69.Google Scholar
  4. 4.
    Glennon, J.D., and Sarkar, B. (1982) Nickel(II)-transport in human blood serum: Studies of nickel(II)-binding to human albumin, native sequence peptide and ternary complex formation with L-histidine. Biochem. 7, 203, 15–23.Google Scholar
  5. 5.
    Glennon, J.D., and Sarkar, B. (1982) The non-specificity of dog serum albumin and the N-terminal model peptide glycylglycyl-L-tyrosine N-methylamide for nickel is due to the lack of histidine in the third position. Biochem. J. 203, 25–31.Google Scholar
  6. 6.
    Laussac, J-P., and Sarkar, B. (1984) Characterization of the copper(II)-and nickel(II)-transport site of human serum albumin. Studies of copper(II) and nickel(II) binding to peptide 1-24 of human serum albumin by 13C and 1H NMR spectroscopy. Biochemistry 23, 2832–2838.CrossRefGoogle Scholar
  7. 7.
    Predki, P., Harford, C., Brar, P., and B. Sarkar (1992) Further characterization of the N-terminal copper(II)-and nickel (II)-binding motif of proteins. Biochem. J. 287, 211–215.Google Scholar
  8. 8.
    Harford, C., and Sarkar, B. (1995) Neuromedin C binds Cu(II) and Ni(II) via the Atcun Motif: Implications for the CNS and cancer growth. Biochem. Biophys. Res. Commun. 29, 877–882.CrossRefGoogle Scholar
  9. 9.
    Sarkar, B. (1983) Albumin as the major plasma protein transporting metals. Life Chem. Reports 1, 165–209.Google Scholar
  10. 10.
    Peters, T, Jr., and Blumenstock, F.A. (1967) Copper-binding properties of bovine serum albumin and its amino terminal peptide fragment. J. Biol. Chem. 242, 1574–1578.Google Scholar
  11. 11.
    Sarkar, B., and Wigfield, Y. (1968) Evidence for albumin-Cu(II)-amino acid ternary complex. Can. J. Biochem. 46, 601–607.CrossRefGoogle Scholar
  12. 12.
    Lau, S. and Sarkar, B. (1971) Ternary coordination complex between human serum albumin, copper(II) and L-histidine. J. Biol. Chem. 246, 5938–5943.Google Scholar
  13. 13.
    Laussac, J-P. and Sarkar, B. (1980) 13Carbon-NMR investigation of the Cu(II)-binding to the native sequence peptide representing the Cu(H)-transport site of human albumin. Evidence for the involvement of the β-carboxyl side chain of aspartyl residue. J. Biol. Chem. 255, 7563–7568.Google Scholar
  14. 14.
    Laussac, J-P. and Sarkar, B. (1980) Nickel(II)-binding to the NH2-terminal peptide segment of human serum albumin: 13C and1H-NMR investigation. Can. J. Chem. 58, 2055–2060.CrossRefGoogle Scholar
  15. 15.
    Sarkar, B., and Kruck, T.P.A. (1966) Copper-Amino Acid Complexes in Human Serum, in Biochemistry of Copper,J. Peisach, P. Aisen and W. Blumberg, Eds., Academic Press, New York, pp. 183–196.Google Scholar
  16. 16.
    Rakhit, G., Antholine, W.E., Froncisz, W., Hyde, J., Pilbrow, J.R., Sinclair, G.R. and Sarkar, B. (1985) Direct evidence of nitrogen coupling in the copper(II) complex of bovine serum albumin by S-band electron spin resonance technique. J. Inorg. Biochem. 25, 217–224.CrossRefGoogle Scholar
  17. 17.
    He, X.M., and Carter, D.C. (1992) Atomic structure and chemistry of human serum albumin. Nature 358, 209–215.CrossRefGoogle Scholar
  18. 18.
    Sarkar, B., Renugopalakrishnan, V., Kruck, T.P.A., and Lau, S.(1976) Molecular Design: Theoretical and Solution Studies on Copper(II) Complex of Glycylglycyl-L-Histidine-N Methyl Amide, a Peptide Designed to Mimic the Copper(II)-Transport Site of Human Albumin, in Environment Effects on Molecular Structure and Properties, B. Pullman, Ed., D. Reidel Publishers, Dordrecht-Holland, pp. 165–178.CrossRefGoogle Scholar
  19. 19.
    B. Sarkar, (1977) Concepts of Molecular Design in Relation to the Metal-Binding Sites of Proteins and Enzymes, in Metal Ligand Interaction in Organic Chemistry and Biochemistry,B. Pullman and N. Goldblum, Eds., D. Reidel Publishers, Dordrect-Holland, pp. 193–228.CrossRefGoogle Scholar
  20. 20.
    Camerman, N., Camerman, A., and Sarkar, B. (1976) Molecular Design to Mimic the Copper(II)-Transport Site of Human Albumin: The Crystal and Molecular Structure of Copper(II)-Glycylglycyl-L-Histidine-N-Methyl Amide Mono Aquo Complex. Can. J. Chem. 54, 1309–1316.CrossRefGoogle Scholar
  21. 21.
    Harford, C., Narindrasorasak, S. and Sarkar, B. (1996) The designed Protein M(II)-Gly-Lys-His-Fos(138-211) specifically cleaves AP-1 binding site containing DNA. Biochemistry 35, 4271–4278.CrossRefGoogle Scholar
  22. 22.
    Kimoto, E., Tanaka, H., Gyotoku, J., Morishige, F. and Pauling, L. (1983) Enhancement of antitumor activity of ascorbate against Ehrlich ascitis tumor cells by the copper: Glycylglycyl histine complex. Cancer Res. 43, 824–828.Google Scholar
  23. 23.
    Inoue, S. and Kawanishi, S, (1989) ESR evidence for Superoxide, hydroxyl radicals and singlet oxygen produced from hydrogen peroxide and nickel (II) complex of glycylglycyl-L-histidine. Biochem. Biophys. Res. Commun. 159, 445–451.CrossRefGoogle Scholar
  24. 24.
    Mack, D.P., Iverson, B.L. and Dervan, P.B. (1988) Design and chemical synthesis of a sequence specific DNA-cleaving protein. J. Am. Chem. Soc. 110, 7572–7574.CrossRefGoogle Scholar
  25. 25.
    Mack, D.P. and Dervan, P.B. (1990) Nickel mediated sequence specific oxidative cleavage of DNA by designed metalloprotein. J. Am. Chem. Soc. 112, 4604–4606.CrossRefGoogle Scholar
  26. 26.
    Shullenberger, D.F., Eason, P.D. and Long, E.C. (1993) Design and synthesis of a versatile DNA-cleaving metallopeptide structural domain. J. Am. Chem. Soc. 115, 11038–11039.CrossRefGoogle Scholar
  27. 27.
    Nagaoka, M., Hagihara, M., Kuwahara, J. and Sugiura, Y. (1994) A novel zinc finger based DNA cutter: Biosynthetic design and highly selective DNA cleavage. J. Am. Chem. Soc. 116, 4085–4086.CrossRefGoogle Scholar
  28. 28.
    Harford, C. and Sarkar, B. (1995) Neuromedin C binds Cu(II) and Ni(II) via the Atcun Motif: Implications for the CNS and cancer growth. Biochem. Biophys. Res. Commun. 29, 877–882.CrossRefGoogle Scholar
  29. 29.
    Curran, T. (1992) Fos and Jun: Oncogenic transcription factors. Tohuku J. Exp. Med. 168, 169–174.CrossRefGoogle Scholar
  30. 30.
    Glover, J.N.M. and Harrison, S.C. (1995) Crystal structure of the heterodimer b-zip transcription factor c-Fos and c-Jun bound to DNA. Nature (London) 373, 257–261.CrossRefGoogle Scholar
  31. 31.
    Kerppola, T. and Curran, T. (1991) DNA bending by Fos and Jun: The flexible hinge model. Science 254, 1210–1214.CrossRefGoogle Scholar
  32. 32.
    Kerppola, T. and Curran, T. (1991) Fos-Jun heterodimers and Jun homodimers bend DNA in opposite orientations — implication for transcription factors cooperativity. Cell 66, 317–326.CrossRefGoogle Scholar
  33. 33.
    Patel, L.R., Curran, T. and Kerppola, T.K. (1994) Energy transfer analysis of Fos-Jun dimerization and DNA binding. Proc. Nalt. Acad. Sci. USA 91, 1219–1123.CrossRefGoogle Scholar
  34. 34.
    Predki, P.F., and Sarkar, B. (1992) Effect of Replacement of ‘Zinc Finger’ Zinc on Estrogen Receptor DNA Interactions. J. Biol Chem., 267, 5842–5846.Google Scholar
  35. 35.
    Nagaoka, M., Kuwahara, J., and Sugiura, Y. (1993) Alteration of DNA-binding specificity by nickel(II) substitution in three zinc (II) fingers of transcription factor SP1. Biochem. Biophys. Res. Commun. 194, 1515–152CCrossRefGoogle Scholar
  36. 36.
    Conte, D., Narindrasorasak, S. and Sarkar, B. (1996) In Vivo and In Vitro iron replaced zinc finger generates free radicals and causes DNA damage. J. Biol. Chem. 271, 5125–5130.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • B. Sarkar
    • 1
    • 2
  1. 1.Department of Biochemistry ResearchThe Hospital for Sick ChildrenTorontoCanada
  2. 2.Department of BiochemistryUniversity of TorontoTorontoCanada

Personalised recommendations