Advertisement

Electrochemical and Chemical Oxidation of K(C2H5OCS2), [Ni(C2H5OCS2)D And [N(C2H5)4][Ni(C2H5OCS2)3]

  • O. Dag
  • A. M. Onal
  • H. Isci
Chapter
  • 253 Downloads
Part of the NATO ASI Series book series (ASEN2, volume 26)

Abstract

Electrochemical and chemical oxidation of (Et-Xan), [Ni(Et-Xan-2] and [Ni(Et-Xan)3] (Et-Xan = C2H5OCS2 ) have been studied by Cyclic Voltammetry and in situ UV-Vis spectroscopy in acetonitrile at room temperature. Cyclic Voltammograms (CV) of Et-Xan and Ni(Et-Xan)2 display one (0.00 V) and two (0.35 and 0.80 V) irreversible oxidation peaks, respectively, referenced to Ag/Ag+(0.10 M) electrode. However, CV of Ni(Et-Xan)3 displays one reversible (-0.15 V) and two irreversible (0.35, 0.80 V) oxidation peaks, respectively, referenced to Ag/Ag+ electrode. The products of constant potential electrolysis at the first oxidation peak potentials of Et-Xan” and [Ni(Et-Xan>2] are the dimer of the oxidized ligand, (Et- Xan-2 and Ni2+ (sol); and that of Ni(Et-Xan)3] are (Et-Xan)2 and [Ni(Et-Xan)2]. Chemical oxidation of Et-Xan and [Ni(Et-Xan)3] with iodine to (Et-Xan)2 and (Et- Xan)2/[Ni(Et-Xan)2], were also achieved. The oxidized ligand in the dimer form can be reduced to Et-Xan with CN in solution. Our data do not support the formation of Ni(III) species at any oxidation stage.

Keywords

Cyclic Voltammograms Oxidation Peak Electrochemical Oxidation Spectral Change Chemical Oxidation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nag, K. and Chakravorty, A. (1980) Monovalent, Trivalent and Tetravalent Nickel, Coor. Chem. Rev. 33, 87–147.CrossRefGoogle Scholar
  2. 2.
    Schoneit, P., Moll, J. and Thauer, R.K. (1979) Nickel, Cobalt and Molybdenum Requirment for Growth of Metanobacterium Thermoautotrophicum, Arch. Microbiol. 123, 105–108.CrossRefGoogle Scholar
  3. 3.
    Kaim, W. and Schwederski, B. (1994) Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life, John and Sons, New York; and references there in.Google Scholar
  4. 4.
    Cammack, R. (1988) Nickel in Metalloproteins, Advances in Inorganic Chemistry 32, 297–333.Google Scholar
  5. 5.
    Moura, J.J., Teixeira, M. and Moura, I. (1989) The Role of Nickel and Iron-Sulfur Centers in the Bioproduction of Hydrogen, Pure and Appl. Chem. 61, 915–921.CrossRefGoogle Scholar
  6. 6.
    Kumar, M., Day, R. O., Colpas, G.J. and Maroney, M.J. (1989) Ligand Oxidation in Nickel Thiolate Complex, J. Am. Chem. Soc. 111, 5974–5976.CrossRefGoogle Scholar
  7. 7.
    Hendricskson, A.R., Martin, R.L. and Rohde, N.M. (1975) Dithiocarbamates of Nickel in the Formal Oxidation States I-IV. Electrochemical Study, Inorg. Chem. 14, 2980–2985.CrossRefGoogle Scholar
  8. 8.
    Haines, R.I. and McAuley, A. (1981) Synthesis and Reactions of Nickel(III) Complexes, Coord. Chem. Rev. 39, 77–119.CrossRefGoogle Scholar
  9. 9.
    Gore, E.S. and Bush, D.H. (1973) Stable Octahedral, Low-Spin Nickel(III) Complexes of A Tetradentate Macrocyclic Ligand Having Saturated Nitrogen Donors, Inorg. Chem. 12, 1–3.CrossRefGoogle Scholar
  10. 10.
    Fabbrizzi, L., Kaden, T.A., Perotti, A., Seghi, B. and Siegfried, L. (1986) Complexes of Divalent and Trivalent Nickel and Copper Ions by Rigid and Flexible Dioxo Tetraaza Macrocycles, Inorg. Chem. 25, 321–327.CrossRefGoogle Scholar
  11. 11.
    Bhattacharya, S., Mukherjee, R. and Chakravorty, A. (1986) A Nickel(III) Complex with a NiO6 Coordination Sphere, Inorg. Chem. 25, 3448–3452.CrossRefGoogle Scholar
  12. 12.
    Lappin, A.G. and McAuley, A. (1988) The Redox Chemistry of Nickel, Advances in Inorganic Chemistry 32, 241–295.CrossRefGoogle Scholar
  13. 13.
    Kluger, H.J., Peng, G. and Holm, R.H. (1991) Low-Potential Nickel(III, II) Complexes; New System Based on Tetradentate Amidate-Thiolate Ligands and the Influence of Ligand Structure on Potentials in Relation to the Nickel Site in [NiFe]-Hydrogenases, Inorg. Chem. 30, 734–742.CrossRefGoogle Scholar
  14. 14.
    Franolic, J.D., Wang, W.Y. and Millar, M. (1992) Synthesis, Structure and Characterization of a Mixed Valence [Ni(II)Ni(III)] Thiolate Dimer, J. Am. Chem. Soc. 114, 6578–6589.CrossRefGoogle Scholar
  15. 15.
    Mukhopadhyay, S. and Ray, D. (1995) Azonaphtholate Ligands for the Nickel(III) Cation: Design, Synthesis, and Electrochemical Properties, J. Chem. Soc. Dalton Trans. 265–268.Google Scholar
  16. 16.
    Bossu, F.P. and Margerum, D.W. (1977) Electrode Potentials of Nickel(III, II>Peptite Complexes, Inorg. Chem. 16, 1210–1214.CrossRefGoogle Scholar
  17. 17.
    Czarneki, J.J. and Margerum, D.W. (1977) Circular Dichroism of Copper and Nickel Tetra-and Pentapeptide Complexes, Inorg Chem. 16, 1997–2003.CrossRefGoogle Scholar
  18. 18.
    Coucouvanis, D. and Fackler, J.P. (1967) Square-Planar Sulfur Complexes. VI. Reaction of Bases with Xanthates, Dithiocarbamates, and Dithiolates of Nickel(II), Inorg. Chem. 6, 2047–2053.CrossRefGoogle Scholar
  19. 19.
    Dooley, D.M. and Patterson, B.M. 91982) Photooxidation of Bis(maleonitriledithiolate) Complexes of Ni, Pd, Pt, Co and Cu, Inorg. Chem. 21, 4330–4332.Google Scholar
  20. 20.
    Vogler, A.K., Kunkely, H., Hlavatsch, J. and Mers, A. (1984) Mixed-Ligand 1, 2-Diimine Ethylene-1, 2-dithiolate Complexes of Ni, Pd and Pt, Inorg. Chem. 23, 506–509.CrossRefGoogle Scholar
  21. 21.
    Fackler, J.P., Avdeef, A. and Fischer, R.G. (1973) Sulfur Chelates. XVI. Chemical Properties of Oxidized Nickel(II) Dithiocarbamates. The X-Ray Crystal Structureof Tris(N, N-di-n-butyldithiocarbamato)nickel(IV) Bromide, J. Am. Chem. Soc. 95, 774–782.CrossRefGoogle Scholar
  22. 22.
    Hendricskson, A.R., Martin, R.L. and Rohde, N.M. (1975) Dithiocarbamates of Nickel in the Formal Oxidation States I-IV. Electrochemical Study, Inorg. Chem. 14, 2980–2985.CrossRefGoogle Scholar
  23. 23.
    Rosen, W. and Busch, D.H. (1969) Nickel(II) complexes of Cyclic Tetradentate Thioethers, J. Am. Chem. Soc. 91, 4694–4697.CrossRefGoogle Scholar
  24. 24.
    Choudhury, S.B., Ray, D. and Chakravorty, A. (1990) Nickel(III)-Sulfur Binding. Chemistry of Tris(xanthate) Family, Inorg. Chem. 29, 4603–4611.CrossRefGoogle Scholar
  25. 25.
    Isci, H., Dag, O. and Mason, W.R. (1993) Electronic Structure and Spectra for Square Complexes Containing Sulfur Donor Ligands: M(dto)2 2+ (M=Pt(II), Pd(II); dto=3, 6-dithiooctane), M(SCN)4 2− (M=Pt(II), Pd(II), and M(Et-Xan)2 (M= Pt(II), Pd(II), Ni(II); Et-Xan= C2H5OCS2), Inorg. Chem. 32, 3909–3914.CrossRefGoogle Scholar
  26. 26.
    Watt, G.W. and McCormick, B.J.J. (1965) The Synthesis and Characterization of Mehtyl and Ethylxanthato Complexes of Pt(II), Pd(II), Ni(II), Cr(II) and Co(II), Inorg. Chem. 27, 898–900.Google Scholar
  27. 27.
    Hathaway, B.J. and Holah, D.G. (1964) Transition-Metal Halide-metal Cyanide Complexes. Part I Manganese, Cobalt, and Nickel, J. Chem. Soc., 2400–2408.Google Scholar
  28. 28.
    Piepho, S.B., Schatz, P.N. and McCaffery, A.J. (1969) Ultraviolet Spectral Assignments in the Tetracyano Complexes of Platinum, Palladium, and Nickel from Magnetic Circular Dichroism, J Am. Chem. Soc. 91, 5994–6001.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • O. Dag
    • 1
  • A. M. Onal
    • 1
  • H. Isci
    • 1
  1. 1.Department of ChemistryMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations