Advertisement

Transport of Biomimetic Multinuclear Complexes of Manganese into Environmental Abudant Clays

  • C. S. Skordilis
  • P. J. Pomonis
Chapter
  • 250 Downloads
Part of the NATO ASI Series book series (ASEN2, volume 26)

Abstract

The involvement of minerals, in the origin of life has been suggested by a number of scientists[l–3]. These hypotheses are based not only on mineral ubiquity on the Earth’s surface but mainly on their chemical and physicochemical properties. Among the minerals which has been considered as the primary candidates for template-directed synthesis of biopolymers are clays as well as pyrite (FeS2). It has been speculated that such surface might have acted via adsorption ans catalysis mechanisms to promote the formation of the first molecules of life [4, 5].

Keywords

Cation Exchange Capacity Pillared Clay Smectite Clay Manganese Cluster Clay Catalyst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernai, J. D. (1951) The Physical Basis of Life, Routledge and Kegan Paul, London.Google Scholar
  2. 2.
    Morowitz, J. H. (1992) Beginning of Cellular Life, Yale University Press, New Haven.Google Scholar
  3. 3.
    Lahan, N. (1994) Minerals and the Origin of Life, Heterogeneous Chemistry Reviews 1(2), 159–179.Google Scholar
  4. 4.
    Cairns-Smith, A. G. (1982) Genetic Takeover and the Mineral Origin of Life, Cambridge University Press.Google Scholar
  5. 5.
    Wachtershauser, G. (1990) Evolution of the first metabolic sites, Proc. Natl. Acad. Sci. USA 87, 200–204.CrossRefGoogle Scholar
  6. 6.
    Wieghardt, K (1994) A Structural Model for the Water-Oxidizing Manganese Cluster in Photosystem II, Angew. Chem., Int. Edit. Engl. 33, 725–728.CrossRefGoogle Scholar
  7. 7.
    Joliot, P. and Kok, B., (1975) Oxygen evolution in photosythesis, Bioenerg. Photosynth., 387–395.Google Scholar
  8. 8.
    Fish, R. H., Fong, R. H., Vincent, G. B. and Christou, G. (1988) Carbon-Hydrogen Activation Chemistry: Hydroxylation of C2, C3 and Cyclo-C6 Hydrocarbons by Manganese Cluster Catalyst J. Chem. Soc, Chem. Commun. 1504–1506.Google Scholar
  9. 9.
    Fish, R. H., Fong, R. H., Pnce, R. T., Vincent, J. B. and Christou, G. (1989) Hydroxylation of C2, C3 and Cyclo-C6 Hydrocarbons by Manganese Porphyrin and Catalysts, ACS Symposium Series 392 Biocatalysis and Biomimetic 116–122.Google Scholar
  10. 10.
    Skordilis, C. S. and Pomonis, P. J. (1996) Heterogenetion of water-sensitive organometallic catalysts into layered aluminosilicates. J. of Mol. Catalysis, A: Chemical 107, 191–197.CrossRefGoogle Scholar
  11. 11.
    Burch, R. and Warburton, C. I. (1986) Zr-Containing pillared interlayer structure, J. of Catalysis 97, 503–510.CrossRefGoogle Scholar
  12. 12.
    Pinnavaia, T. J. and Welty, P. K. (1975) Catalytic hydrogenation of 1-hexene by rhodium complexes in the intracrystal space of the swelling layer lattice silicate, J. Am. Chem. Soc 97, 3819–3820.CrossRefGoogle Scholar
  13. 13.
    Pinnavaia, T. J., Raythatha, R J., Lee, G. S., Halloran, L. J and Hoffman, J. F (1979) Intercalation of catalyticaly active metal complexes in mica type silicates. Rhodium hydrogenation catalysts, J. Am. Chem. Soc. 101, 6891–6897.CrossRefGoogle Scholar
  14. 14.
    Pinnavaia, T. J. (1987) Swelling clays and related complex layered oxide, Chemical Physics of intercalation 172, 223–227.Google Scholar
  15. 15.
    Pinnavaia, T. J. (1983) Intercalated clay catalyst, Science 220, 365–371.CrossRefGoogle Scholar
  16. 16.
    Figueras, F. (1988) Pillared clays as catalyst, Catal. Rev. Sci. Eng. 30, 457–499.Google Scholar
  17. 17.
    Mitchel, I. V (1990) Pillared Layered Structures Current Trends and Applications, Elsevier, Amsterdam.Google Scholar
  18. 18.
    Brindley, G. W. and Sempels, R. E. (1977) Preparation and properties of some hydroxyl aluminium Beidellites, Clay Miner. 12, 229–232.CrossRefGoogle Scholar
  19. 19.
    Yamanaka, S. and Brindley, G. W. (1979) High surface area solids obtained by reaction of montmorillonite with zirconyl chloride, Clays Clay Miner. 24, 119–124.CrossRefGoogle Scholar
  20. 20.
    Ladavos, A. K and Pomonis, P. J (1991) Intercalation of La2O3 and La2O3-NiO oxidic species into montmorillonite layered structure, Preparation of Catalyst V, Eds G. Poncelet, P. A. Jacobs, P. Grance and B. Delmon, Elsevier, 319–328.Google Scholar
  21. 21.
    Braddell, O., Barklie, R. C., Doff, D. H., Gangas, N. H and McKimm, A. (1987) EPR of Cu ions in pillared clay, Z. Phys. Chemie, N.F., 151, 157–164.CrossRefGoogle Scholar
  22. 22.
    Berkheiser, V.E and Mortland, M.M (1977) Hectorite complexes with Cu(II) and Fe(II) phenathroline cheletes, Clays and Clay Miner., 25, 105–112.CrossRefGoogle Scholar
  23. 23.
    Skaribas, P. S. (1992) Preparation and catalytic activity fo perovskites LaMO3 via binuclear complexes into layered aluminosilicates, Ph.D. Thesis, University of Ioannina.Google Scholar
  24. 24.
    Skaribas, P. S., Pomonis, P. J, Grange, P. and Delmon, B. (1992) Controlled architecture of solids with micro-and meso-porosity obtained by pillaring of montmorillonite with an LaNiOx binary oxides, J. Client. Soc. Faraday Trans. 88, 3217–3223.CrossRefGoogle Scholar
  25. 25.
    Bergaya, F., Hassoun, N. Gatineau, L and Barrault, J. (1991) Mixed Al-Fe pillared laponites, Preparation of Catalyst V, Eds G. Poncelet, P. A. Jacobs, P. Grance and B. Delmon, Elsevier, 329–336.Google Scholar
  26. 26.
    Lee, W. Y. Raythatha, R. H. and. Tatarchouk, B. J (1989) Pillared clay catalyst containing mixed metal complexes. J. Catalysis. 115, 159–169.CrossRefGoogle Scholar
  27. 27.
    Steile, J. (1991) Preparation and properties of large pore RE/Al-pillared montmorillonite. Preparation of Catalyst V, Eds G. Poncelet, P. A. Jacobs, P. Grance and B. Delmon, Elsevier, 301–310.Google Scholar
  28. 28.
    Giannelis, E. P and Pinnavaia, T. J. (1985) Intercalation of metal cluster complexes in smectite clays, Inorg. Chem., 24, 3602–3607.CrossRefGoogle Scholar
  29. 29.
    Chin, C. S., Lee, B., Yoo, I. and Kwon, T. (1993) Synthesis and catalytic activity of iridium complexes intercalated into niontmorillonite, J. Chem. Soc. Dalton Trans., 581–588.Google Scholar
  30. 30.
    Skordilis, C. S and Pomonis, P. J (1994) Preparation of fine manganese oxidic particles via hydrolysis of a multinuclear manganese complex, J. Colloid and Interface Science, 166, 61–65.CrossRefGoogle Scholar
  31. 31.
    Skordilis, C. S and Pomonis, P. J. (1995) Synthesis characterization and catalytic activity of manganese oxidic nano-particles, Preparation of Catalyst VI, Eds G. Poncelet, P. A. Jacobs, P. Grance and B. Delmon, Elsevier, 513–522.Google Scholar
  32. 32.
    MacEvan, D.M.C (1947) Complexes of clays with organic compounds, Trans. Faraday Soc, 44, 349–367.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • C. S. Skordilis
    • 1
  • P. J. Pomonis
    • 1
  1. 1.Department of ChemistryUniversity of IoanninaIoanninaGreece

Personalised recommendations