Advertisement

Effects of Calcium, Magnesium, Zinc, and Iron on Nickel Carcinogenesis: Inhibition Versus Enhancement

  • K. S. Kasprzak
Chapter
Part of the NATO ASI Series book series (ASEN2, volume 26)

Abstract

This paper reviews the investigations on interactions between nickel and calcium, magnesium, zinc, or iron, aimed at elucidation of the mechanisms of nickel carcinogenesis and its prevention. Depending on the animal species, target tissues, particular metal compounds, and routes of administration, the divalent metals magnesium, calcium, or zinc, inhibit or have no effect on nickel carcinogenesis, whereas trivalent iron can either inhibit or enhance it. The molecular mechanisms involved in the observed effects are likely to include interactions at the tissue and cellular metal transport levels. They may, as well, depend on binding competition among metal ions at chromatin (e.g., DNA, histones, transcription factors, DNA repair enzymes) and other regulatory molecules in both the target cells, which give rise to tumors, and immune cells, which are responsible for controlling tumor growth.

Keywords

Renal Tumor Nickel Compound Nickel Toxicity Nickel Sulphide Local Sarcoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nordberg, F. and Andersen, O. (1981) Metal carcinogenesis: Enhancement, inhibition, Environ. Health Perspect. 40, 65–81.CrossRefGoogle Scholar
  2. 2.
    Kasprzak, K.S. and Waalkes, M.P. (1986) The role of calcium, magnesium, and zinc in carcinogenesis, in L.A. Poirier, P.M. Newbeme, and M.W. Pariza (eds.), Essential Nutrients in Carcinogenesis, Plenum, New York, pp. 497–515.CrossRefGoogle Scholar
  3. 3.
    Rodriguez, R.E. and Kasprzak, K.S. (1989) Antagonists to metal carcinogens, J. Am. Coll. Toxicol. 8, 1265–1269.CrossRefGoogle Scholar
  4. 4.
    Kasprzak, K.S. (1990) Metal interactions in nickel, cadmium, and lead carcinogenesis, in E.C. Foulkes (ed.), Biological Effects of Heavy Metals. II. Metal Carcinogenesis, CRC Press, Boca Raton, pp. 173–189.Google Scholar
  5. 5.
    Kasprzak, K.S. and Rodriguez, R.E. (1992) Inhibitory effects of zinc, magnesium, and iron on nickel subsulfide carcinogenesis in rat skeletal muscle, in E. Nieboer and J.O. Nriagu (eds.), Nickel in Human Health: Current Perspectives, J. Wiley, New York, pp. 545–559.Google Scholar
  6. 6.
    Kenney, M.A. and McCoy, H. (1992) A review of biointeractions of Ni and Mg. I. Enzyme, endocrine, transport and skeletal systems, Magnesium Res. 5, 215–222.Google Scholar
  7. 7.
    Littlefield, N.A. and Poirier, L.A. (1992) Carcinogenicity interactions between nickel and magnesium, in J. Anastassopoulou, P. Collery, J.C. Etienne, and T. Theophanides(eds.), Metal Ions in Biology and Medicine, Vol. 2, J. Libbey Eurotext, Paris, pp. 157–162.Google Scholar
  8. 8.
    Clarkson, T.W. (1993) Molecular and ionic mimicry of toxic metals, Annu. Rev. Pharmacol. Toxicol. 32, 545–571.CrossRefGoogle Scholar
  9. 9.
    Luo, S.-Q., Plowman, M.C., Hopfer, S.M., and Sunderman, F.W., Jr. (1993) Mg2+ deprivation enhances and Mg2+ supplementation diminishes the embryotoxic and teratogenic effects of Ni2+, Co2+, Zn2+, and Cd2+ for frog embryos in the FETAX assay, Ann. Clin. Lab. Sci. 23, 121–129.Google Scholar
  10. 10.
    IARC Monographs on the Evaluation of Carcinogenic Risk to Humans, Vol. 49 (1990) Chromium, Nickel and Welding, IARC, Lyon.Google Scholar
  11. 11.
    Sunderman, F.W., Jr., Lau, T.J., and Cralley, L.J. (1974) Inhibitory effect of manganese upon muscle tumorigenesis by nickel subsulfide, Cancer Res. 34, 92–98.Google Scholar
  12. 12.
    Sunderman, F.W., Jr., Kasprzak, K.S., Lau, T.J., Minghetti, P.P., Maenza, R.M., Becker, N., Onkelinx, C., and Goldblatt, P.J. (1976) Effects of manganese on carcinogenicity and metabolism of nickel subsulfide, Cancer Res. 36, 1790–1800.Google Scholar
  13. 13.
    Survderman, F.W., Jr. and McCully, K.S. (1983) Effects of manganese compounds on carcinogenicity of nickel subsulfide in rats, Carcinogenesis, 4, 461–465.CrossRefGoogle Scholar
  14. 14.
    Kasprzak, K.S., Waalkes, M P., and Poirier, L.A. (1986) Antagonism by essential divalent metals and amino acids of nickel(II)-DNA binding in vitro, Toxicol. Appl. Pharmacol. 82, 336–3CrossRefGoogle Scholar
  15. 15.
    Sunderman, F.W., Jr. (1984) Recent advances in metal carcinogenesis, Ann. Clin. Lab. Sci. 14, 93422.Google Scholar
  16. 16.
    Kasprzak, K.S., Waalkes, M.P., and Poirier, L.A. (1987) Effects of essential divalent metals on carcinogenicity and metabolism of nickel and cadmium, Biol. Trace Elem. Res. 13, 253–273.CrossRefGoogle Scholar
  17. 17.
    Poirier, L.A., Theiss, J.C., Arnold, L.J., and Shimkin, M.B. (1984) Inhibition by magnesium and calcium acetates of lead subacetate-and nickel acetate-induced lung tumors in strain A mice, Cancer Res. 44, 1520–1522.Google Scholar
  18. 18.
    Kasprzak, K.S. and Poirier, L.A. (1985) Effects of calcium(II) and magnesium(II) on nickel(II) uptake and stimulation of thymidine incorporation into DNA in the lungs of strain A mice, Carcinogenesis 6, 1819–1821.CrossRefGoogle Scholar
  19. 19.
    Kasprzak, K.S., Quander, R.V., and Poirier, L.A. (1985) Effects of calcium and magnesium salts on nickel subsulfide carcinogenicity in Fischer rats, Carcinogenesis 6, 1161–1166.CrossRefGoogle Scholar
  20. 20.
    Kasprzak, K.S., Ward, J.M., Poirier, L.A., Reichardt, D.A., Denn, A.C., III, and Reynolds, C.W. (1987) Nickel-magnesium interactions in carcinogenesis: dose-effects and involvement of natural killer cells, Carcinogenesis 8, 1005–1 Oil.CrossRefGoogle Scholar
  21. 21.
    Kasprzak, K.S., Diwan, B.A., and Rice, J.M. (1994) Iron accelerates while magnesium inhibits nickel-induced carcinogenesis in the rat kidney, Toxicology 90, 129–140.CrossRefGoogle Scholar
  22. 22.
    Sunderman, F.W., Jr. and Hopfer, S.M. (1983) Correlation between the carcinogenic activities of nickel compounds and their potencies for stimulating erythropoiesis in rats, in B. Sarkar (ed.), Biological Aspects of Metals and Metal-Related Diseases, Raven Press, New York, pp. 171–181.Google Scholar
  23. 23.
    Miki, H., Kasprzak, K.S., Kenney, S., and Heine, U.I. (1987) Inhibition of intercellular communication by nickel(II): Antagonistic effect of magnesium, Carcinogenesis 8, 1757–1760.CrossRefGoogle Scholar
  24. 24.
    Kasprzak, K.S., Waalkes, M.P., and Poirier, L.A. (1986) Effects of magnesium acetate on the toxicity of nickelous acetate in rats, Toxicology 42, 57–68.CrossRefGoogle Scholar
  25. 25.
    Kasprzak, K.S., Waalkes, M.P., and Poirier, L.A. (1986) Antagonism by essential divalent metals and amino acids of nickel(II)-DNA binding in vitro, Toxicol. Appl. Pharmacol. 82, 336–343.CrossRefGoogle Scholar
  26. 26.
    Smialowicz, R.J., Rogers, R.R., Riddle, M.M., and Stott, G.A. (1984) Immunologic effects of nickel. I. Suppression of cellular and humoral immunity, Environ. Res. 33, 413–427.CrossRefGoogle Scholar
  27. 27.
    Smialowicz, R.J., Rogers, R.R., Riddle, M.M., Garner, R.J., Rowe, D.G, and Luebke, R.W. (1985) Immonologic effects of nickel. II. Suppression of natural killer cell activity, Environ. Res. 36, 56–66.CrossRefGoogle Scholar
  28. 28.
    Benson, J.M., Henderson, R.F., and McClellan, R.O. (1986) Comparative cytotoxicity of four nickel compounds to canine and rodent alveolar macrophages in vitro, J. Toxicol. Environ. Health 19, 105–110.CrossRefGoogle Scholar
  29. 29.
    Sunderman, F.W., Jr. (1990) Regulation of gene expression by metals: Zinc finger loop domains in transcription factors, hormone receptors, and proteins encoded by oncogenes, in P. Collery, L.A. Poirier, M. Manfait, and J.C. Etienne (eds.), Metal Ions in Biology and Medicine, Vol. 1, J. Libbey Eurotext, Paris, pp. 549–554.Google Scholar
  30. 30.
    Kasprzak, K.S., Kovatch, R.M., and Poirier, L.A. (1988) Inhibitory effect of zinc on nickel subsulfide carcinogenesis in Fischer rats, Toxicology 52, 253–262.CrossRefGoogle Scholar
  31. 31.
    Kasprzak, K.S., Waalkes, M.P., Ohshima, M., and Poirier, L.A. (1985) Protective effects of zinc(II) acetate toward the toxicity of nickel(II)acetate in rats, Toxicology 34, 29–41.CrossRefGoogle Scholar
  32. 32.
    Higinbotham, K.G., Rice, J.M., Diwan, B.A., Kasprzak, K.S., Reed, C.D., and Perantoni, A.O. (1992) GGT to GTT transversions in codon 12 of the K-ras oncogene in rat renal sarcomas induced with nickel subsulfide or nickel subsulfide/iron are consistent with oxidative damage to DNA. Cancer Res. 52, 4747–4751.Google Scholar
  33. 33.
    Costa, M. (1991) Molecular mechanisms of nickel carcinogenesis, Annu. Rev. Pharmacol. Toxicol. 31, 321–337.CrossRefGoogle Scholar
  34. 34.
    Sunderman, F.W., Jr., McCully, K.S., and Hopfer, S.M. (1984) Association between erythrocytosis and renal cancers in rats following intrarenal injection of nickel compounds, Carcinogenesis, 5, 1511–1517.CrossRefGoogle Scholar
  35. 35.
    Nielsen, F. (1980) Interactions of nickel with essential minerals, in O. Nriagu (ed.), Nickel in the Environment, J. Wiley-Interscience, New York, pp. 611–634.Google Scholar
  36. 36.
    Sunderman, F.W., Jr. (1983) Organ and species specificity in nickel subsulfide carcinogenesis, in R. Langenbach, S. Nesnow, and J.M. Rice (eds.), Organ and Species Specificity in Chemical Carcinogenesis, Plenum, New York, pp. 107–126.CrossRefGoogle Scholar
  37. 37.
    Kasprzak, K.S. (1995) Possible role of oxidative damage in metal-induced carcinogenesis, Cancer Invest. 13, 411–430.CrossRefGoogle Scholar
  38. 38.
    Misra, M., Rodriguez, R.E., North, S.L., and Kasprzak, K.S. (1991) Nickel-induced renal lipid peroxidation in different strains of mice: concurrence with nickel effect on antioxidant defense systems, Toxicol. Lett. 58, 121–133.CrossRefGoogle Scholar
  39. 39.
    Rodriguez, R.E., Misra, M., North, S.L., and Kasprzak, K.S. (1991) Nickel-induced lipid peroxidation in the liver of different strains of mice and its relation to nickel effects on antioxidant systems, Toxicol. Lett. 57, 269–281.CrossRefGoogle Scholar
  40. 40.
    Kasprzak, K.S., Gabryel, P., and Jarczewska, K. (1983) Carcinogenicity of nickel(II)hydroxides and nickel(II) sulfate in Wistar rats and its relation to the in vitro dissolution rates, Carcinogenesis, 4, 275–279.CrossRefGoogle Scholar
  41. 41.
    Kasprzak, K.S., Kiser, R.F., and Weislow, O.S. (1988) Magnesium counteracts nickel-induced suppression of T lymphocyte response to Concanavalin A, Magnesium 7, 166–172.Google Scholar
  42. 42.
    Zeromski, J., Jezewska, E., Sikora, J., and Kasprzak, K.S. (1995) The effect of nickel compounds on immunophenotype and natural killer cell function of normal human lymphocytes, Toxicology 97, 39–48.Google Scholar
  43. 43.
    Jaramillo, A. and Sonnenfeld, G. (1992) Potentiation of lymphocyte proliferative responses by nickel sulfide, Oncology 49, 396–406.CrossRefGoogle Scholar
  44. 44.
    Li, W., Zhao, Y., and Chou, I.N. (1996) Mg2+ antagonism of Ni2+-induced changes in microtubule assembly and cellular thiol homeostasis, Toxicol. Appl. Pharmacol. 136, 101–111.CrossRefGoogle Scholar
  45. 45.
    Daniel, M.R. (1966) Strain differences in the response of rats to the injection of nickel sulphide, Br. J. Cancer 20, 886–895.CrossRefGoogle Scholar
  46. 46.
    Corbeil, L.B. (1968) Antigenicity of rhabdomyosarcomas induced by nickel sulphide, Ni3S2, Cancer 21, 184–189.CrossRefGoogle Scholar
  47. 47.
    Porter, D.W., Nelson, V., and Kasprzak, K.S. (1996) Mechanistic studies on the inhibition by Ni(II) of 8-oxo-2′-deoxyguanosine-5′-triphosphatase (MutT), a nucleotide pool-sanitizing enzyme, Fourth Intl. Symp. Metal Ions Biol. Med., Barcelona, Spain, May, 1996.Google Scholar
  48. 48.
    Hartwig, A., Schlepegrell, R., and Beyersmann, D. (1992) Interactions in nickel mutagenicity: indirect mechanisms in genotoxicity and interference with DNA repair, in E. Merian and W. Haerdi (eds.), Metal Compounds in Environment and Life, Vol. 4, Science Reviews Inc., Wilmington, pp. 475–480.Google Scholar
  49. 49.
    Prasad, A.S. (1979) Zinc in Human Nutrition, CRC Press, Boca Raton.Google Scholar
  50. 50.
    Fraker, P.J., Gershwin, M.E., Good, R.A., and Prasad, A.A. (1986) Interrelationships between zinc and immune function, Fed. Proc. 45, 1474–1479.Google Scholar
  51. 51.
    Kasprzak, K.S. and Sunderman, Jr.,F.W. (1977) Mechanism of dissolution of nickel subsulfide in rat serum, Res. Commun. Chem. Pathol. Pharmacol. 16, 95–108.Google Scholar
  52. 52.
    Kasprzak, K.S., Diwan, B.A., Konishi, N., Misra, M., and Rice, J.M. (1990) Initiation by nickel acetate and promotion by sodium barbital of renal cortical epithelial tumors in male F344 rats, Carcinogenesis 11, 647–652.CrossRefGoogle Scholar
  53. 53.
    Diwan, B.A., Kasprzak, K.S., and Rice, J.M. (1992) Transplacental carcinogenic effects of nickel(II) acetate in the renal cortex, renal pelvis and adenohypophysis in F344/NCr rats, Carcinogenesis 13, 1351–1357.CrossRefGoogle Scholar
  54. 54.
    Santucci, B., Cannistraci, C., Cristaudo, A., and Picardo, M. (1993) Interactions of metals in nickel-sensitive patients, Contact Dermatitis 29, 251–253.CrossRefGoogle Scholar
  55. 55.
    Santucci, B., Cannistraci, C., Cristaudo, A., and Picardo, M. (1995) Nickel/magnesium interactions in nickel-sensitive patients, Contact Dermatitis 33, 20–27.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • K. S. Kasprzak
    • 1
  1. 1.Laboratory of Comparative CarcinogenesisNational Cancer Institute, FCRDCFrederickUSA

Personalised recommendations