Modeling the Metal Binding Sites in Core Histones: Interactions of Carcinogenic Ni(II) with the -CAIH- Motif of Histone H3

  • W. Bal
  • K. S. Kasprzak
Part of the NATO ASI Series book series (ASEN2, volume 26)


This paper presents results of studies on interactions of carcinogenic nickel with -CAIH-, a potential metal binding motif in nuclear chromatin. Structural and mechanistic results are discussed in the perspective of various concepts in nickel carcinogenesis. Evidence is presented for a major role of oxidative mechanism of damage caused by Ni(II) binding and reactivity on both genotoxic (DNA) and epigenetic (core histones) levels. Preliminary results of a study of (H3-H4)2 histone tetramer supporting the validity of CAIH model are also shown.


Ternary Complex Isosbestic Point Linker Histone Chicken Erythrocyte Histone Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    IARC (1990) IARC Monographs on the Evaluation of Carcinogenic Risk to Humans. Vol. 49. Chromium, Nickel and Welding, IARC, LyonGoogle Scholar
  2. 2.
    Lee, J.E., Ciccarelli, R.B., and Wetterhahn-Jeanette, K. (1982) Solubilization of the carcinogen nickel subsulfide and its interaction with deoxynucleic acid and protein, Biochemistry 21, 771–778.CrossRefGoogle Scholar
  3. 3.
    Kasprzak, K.S., Waalkes, M.P., and Poirier, L.A. (1986) Antagonism by essential divalent metals and amino acids of nickel(II)-DNA binding in vitro, Toxicol. Appl. Pharmacol. 82, 336–343.CrossRefGoogle Scholar
  4. 4.
    Kasprzak, K. S. (1995) Possible role of oxidative damage in metal-induced carcinogenesis, Cancer Invest. 13, 411–430.CrossRefGoogle Scholar
  5. 5.
    Kasprzak, K.S. (1996) The oxidative damage hypothesis of metal-induced genotoxicity and carcinogenesis, this volume.Google Scholar
  6. 6.
    Tkeshelashvili, L.K., Reid, T.M., McBnde, T.J., and Loeb, L.A. (1993) Nickel induces a signature mutation for oxygen free radicals, Cancer Res. 53, 4172–4174.Google Scholar
  7. 7.
    Wallmg, C. (1975) Fenton’s reagent revisited, Acc. Chem. Res. 8, 125–131.CrossRefGoogle Scholar
  8. 8.
    Eickbush, T.H., and Moudrianakis, E.N. (1978) The histone core complex: An octamer assembled by two sets of protein-protein interactions, Biochemistry 17, 4955–4964.CrossRefGoogle Scholar
  9. 9.
    Arents, G., and Moudrianakis, E.N., (1993) Topography of the histone octamer surface: Repeating structural motifs utilized in the docking of nucleosomal DNA, Proc. Natl. Acad. Sci. USA 90, 10489–10493.CrossRefGoogle Scholar
  10. 10.
    Zlatanova, J., and van Holde, K. (1996) The linker histones and chromatin structure: new twists, in W.E. Cohn, and K. Moldave (eds.), Nucleic Acid Research and Molecular Biology, vol. 52, Academic Press,San Diego, pp. 217–2Google Scholar
  11. 11.
    Hsiung, N. and Kucherlapati, R. (1980) Histone gene expression and chromatin structure in mammalian cell hybrids, J. Cell. Biol. 87, 227–236.CrossRefGoogle Scholar
  12. 12.
    Alberts, D., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J.D. (1994) Molecular Biology of the Cell, 3rd ed., Garland, New York, pp. 335–399.Google Scholar
  13. 13.
    Cook, P.R. (1995) A chromomenc model for nuclear and chromosome structure, J. Cell. Sci. 108, 2927–2935.Google Scholar
  14. 14.
    Costa, M. (1991) Molecular mechanisms of nickel carcinogenesis, Annu. Rev. Pharmacol. Toxicol. 31, 321–337.CrossRefGoogle Scholar
  15. 15.
    Salnikov, K., Cosentino, S., Klein, C., and Costa, M. (1994) Loss of thrombospondin transcriptional activity in nickel-transformed cells, Mol. Cell. Biol. 14, 851–858.Google Scholar
  16. 16.
    Lee, Y.-W., Klein, C.B., Kargacin, B., Salnikov, K., Kitahara, J., Dowjat, K., Zhitkovich, A., and Costa, M. (1995) Carcinogenic nickel silences gene expression by chromatin condensation and DNA methylation: a new model for epigenetic carcinogen, Mol. Cell. Biol. 15, 2547–2557.Google Scholar
  17. 17.
    Huang, X., Kitahara, J., Zhitkovich, A., Dowjat, K., and Costa, M. (1995) Heterochromatic proteins specifically enhance nickel-induced 8-oxo-dG formation, Carcinogenesis 16, 1753–1759.CrossRefGoogle Scholar
  18. 18.
    Hartwig, A. (1995) Current aspects in metal genotoxicity, BioMetals 8, 3–11.CrossRefGoogle Scholar
  19. 19.
    Hartwig, A., Mullenders, L.H.F., Schlepegrell, R., Kasten, U., and Beyersmann, D. (1994) Nickel(II) interferes with the incision step in nucleotide excision repair in mammalian cells, Cancer Res. 54, 4045–4051.Google Scholar
  20. 20.
    Porter, D.W., Nelson, V.C., Fivash, Jr., M.J., and Kasprzak, K.S. (1996) Mechanistic studies on the inhibition by Ni(II) of 8-oxo-2′-deoxyguanosine-5′-triphosphatase (MutT), a nucleotide pool-sanitizing enzyme, in P. Collery (ed.), Metal Ions in Biology and Medicine, Vol. 4, John Libbey Eurotext, Montrouge, in press.Google Scholar
  21. 21.
    Datta, A.K., Shi, X., and Kasprzak, K.S. (1993) Effect of carnosine, homocamosine, and anserine on hydroxylarion of the guanine moiety in 2′-deoxyguanosine, DNA and nucleohistone with hydrogen peroxide in the presence of nickel (II), Carcinogenesis 14, 417–422.CrossRefGoogle Scholar
  22. 22.
    Halcrow, MA. and Chnstou, G. (1994) Biomimetic chemistry of nickel, Chem. Rev. 94, 2421–2481.CrossRefGoogle Scholar
  23. 23.
    Pettit, L.D., Gregor, J.E., and Kozlowski, H., (1991) Complex formation between metal ions and peptides, in R.W. Hay, JR. Dillworth, and K.B. Nolan (eds.) Perspectives on Bioinorganic Chemistry Vol. 1 JAI Press,Greenwich, pp. 1–Google Scholar
  24. 24.
    IUPAC Stability Constants Database, Release 2, (1995) IUPAC and Academic SoftwareGoogle Scholar
  25. 25.
    GenPept (GenBank Gene Products) Database distributed by National Cancer Institute Frederick Biomedical Supercomputing Center. For GenBank, cf. Burks, C, Cassidy, M., Cinkosky, M.J., Cumella, K.E., Gilna, P., Hayden, J. E-D., Kelley, T.A., Kelly, M., Kristofferson, D., and Ryals, J. (1991) GenBank, Nucl. Acids Res. 19 (Suppl.) 2221–2225.CrossRefGoogle Scholar
  26. 26.
    von Holt, C., Brandt, W.F., Greyling, HJ., Lindsey, G.G., Retief, J.D., Rodrigues, J. de A., Schwager, S., and Sewell, B.T. (1989) Isolation and characterization of histones. Appendix: Histone sequences, in P. M. Wassarman and R. D. Kornberg (eds.) Methods in Enzymology, Vol. 170, Nucleosomes, Academic Press, San Diego, pp. 503–523.Google Scholar
  27. 27.
    Arents, G., Burlingame, R.W., Wang, B.-C, Love, WE., and Moudnanakis, E.N. (1991) The nucleosomal core histone octamer at 3.1 A resolution: a tripartite protein assembly and a left-handed superhelix, Proc. Natl. Acad. Sci. USA 88, 10148–10152.CrossRefGoogle Scholar
  28. 28.
    Arents, G. and Moudrianakis, E.N. (1994) DNA protein interactions in chromatin and the structure of the histone octamer, in R.H. Sarma and M.H. Sarma (eds.), Structural Biology: The State of the Art, Proceedings of the Eighth Conversation, State University of New York, Albany, NY, 1993, Adenine Press, New York, pp. 93–108Google Scholar
  29. 29.
    Arents, G. and Moudnanakis, E.N. (1995) The histone fold: a ubiquitous architectural motif utilized in DNA compaction and protein dimerization, Proc. Natl. Acad. Sci. USA 92, 11170–11174.CrossRefGoogle Scholar
  30. 30.
    Wang, B.-C, `Rose, J., Arents, G., and Moudrianakis, E.N. (1994) The octameric histone core of the nucleosome. Structural issues resolved, J. Mol. Biol. 236, 179–188.CrossRefGoogle Scholar
  31. 31.
    Camenni-Otero, R.D., and Felsenfeld, G. (1977) Histone H3 disulfide dimers and nucleosome structure, Proc. Natl. Acad. Sci. USA 74, 5519–5523.CrossRefGoogle Scholar
  32. 32.
    Daban, J.-R., and Cantor, C.R. (1989) Use of fluorescent probes to study nucleosomes, in P. M. Wassarman and R. D Kornberg (eds.) Methods in Enzymology, Vol. 170, Nucleosomes., Academic Press, San Diego, pp. 192–214.Google Scholar
  33. 33.
    Bal, W., Chmurny, G.N., Hilton, B.D., Sadler, P.J., and Tucker, A. (1996) Axial hydrophobic fence in highly-stable Ni(II) complex of des-angiotensinogen N-terminal peptide, J. Am. Chem. Soc. in press.Google Scholar
  34. 34.
    Yamashita, M.M., Wesson, L., Eisenman, G., and Eisenberg, D.(1990) Where metal ions bind in proteins, Proc. Natl. Acad. Sci. USA 87, 5648–5652.CrossRefGoogle Scholar
  35. 35.
    Regan, L. (1993) The design of metal-binding sites in proteins, Annu. Rev. Biophys. Biomol. Struct. 22, 257–281.CrossRefGoogle Scholar
  36. 36.
    Saavedra, R.A. (1986) Histones and metal-binding domains. Science 232, 1589, and response from Berg, J.M. therein.Google Scholar
  37. 37.
    Bal, W., Lukszo, J., Jezowska-Bojczuk, M., and Kasprzak, K.S. (1995) Interactions of nickel(II) with histones. Stability and solution structure of complexes with CH3CO-Cys-Ala-Ile-His-NH2, a putative metal binding sequence of histone H3, Chem. Res. Toxicol. 8, 683–692.CrossRefGoogle Scholar
  38. 38.
    Sigel, H., and Martin, R.B. (1982) Coordinating properties of the amide bond. Stability and structure of metal ion complexes of peptides and related ligands, Chem. Rev. 82, 385–426.CrossRefGoogle Scholar
  39. 39.
    Chang, J.W., and Martin, R.B., (1969) Visible circular dichroism of planar nickel ion. Complexes of peptides and cysteine and derivatives, J. Phys. Chem. 73, 4277–4283.CrossRefGoogle Scholar
  40. 40.
    Kozlowski, H., Decock Le Reverend, B., Ficheux, D., Loucheux, C., and Sovago, I., (1987) Nickel(II) complexes with sulfhydryl containing peptides. Potentiometric and spectroscopic studies, J. Inorg. Biochem. 29, 187–197.CrossRefGoogle Scholar
  41. 41.
    Cherifi, K., Decock Le Reverend, B., Varnagy, K., Kiss, T., Sovago, I., Loucheux, C., and Kozlowski, H. (1990) Transition metal complexes of L-cysteine containing di-and tripeptides. J. Inorg. Biochem. 38, 69–80.CrossRefGoogle Scholar
  42. 42.
    Margerum, D.W., and Dukes, G.R. (1974) Kinetics and mechanism of metal-ion and proton-transfer reactions of oligopeptide complexes, in H. Sigel (ed.), Metal Ions in Biological Systems Vol.1, Simple Complexes, Marcel Dekker Inc., New York, pp. 158–212.Google Scholar
  43. 43.
    Bal, W., Kozlowski, H., Robbins, R., and Pettit, L.D. (1995) Competition between the terminal amino and imidazole nitrogen donors for co-ordination to Ni(II) ions in oligopeptides. Inorg. Chim. Acta 231, 7–12.CrossRefGoogle Scholar
  44. 44.
    Pettit, L.D., Pyburn, S., Bal, W., Kozlowski, H., and Bataille, M. (1990) A study of the comparative donor properties of the terminal amino and imidazole nitrogens in peptides, J. Chem. Soc, Dalton Trans. 3565–3570.Google Scholar
  45. 45.
    Bal, W., Jezowska-Bojczuk, M., Kozlowski, H., Chruscinski, L., Kupryszewski, G., and Mackiewicz, Z. (1995) Cu(II) binding by Asp-Arg-Val-Tyr-Ile-His and Arg-Val-Tyr-Ile-His, essential peptide fragments of angiotensin II, J. Inorg. Biochem. 57, 235–247.CrossRefGoogle Scholar
  46. 46.
    Bal, W., Lukszo, J., and Kasprzak, K.S. (1996) Interactions of nickel(II) with histones: Enhancement of 2′-deoxyguanosine oxidation by Ni(II) complexes with CH3CO-Cys-Ala-Ile-His-NH2, a putative metal binding sequence of histone H3, Chem. Res. Toxicol. 9, 535–5CrossRefGoogle Scholar
  47. 47.
    Cotton, F.A., and Wilkinson, G. (1988) Advanced inorganic chemistry, 5th ed. Wiley-Interscience, New York, pp. 748–752.Google Scholar
  48. 48.
    Saha, N., and Sigel, H. (1982) Ternary complexes in solution as models for enzyme-metal ion-substrate complexes. Comparison of the coordination tendency of imidazole and ammonia toward the binary complexes of Mn(II), Co(II), Ni(II), Cu(II), Zn(II), or Cd(II) and uridine 5′-triphosphate or adenosine 5′-triphosphate, J. Am.Chem. Soc. 104, 4100–4105.CrossRefGoogle Scholar
  49. 49.
    Kasprzak, K.S., and Hernandez, L. (1989) Enhancement of hydroxylation and deglycosylation of 2′-deoxyguanosine by carcinogenic nickel compounds, Cancer Res. 49, 5964–5968.Google Scholar
  50. 50.
    Datta, A.K., Riggs, C.W., Fivash, Jr., M.J., and Kasprzak, K.S. (1991) Mechanisms of nickel carcinogenesis. Interaction of Ni(II) with 2′-deoxynucleosides and 2′-deoxynucleotides, Chem.-Biol. Interact. 79, 323–334.CrossRefGoogle Scholar
  51. 51.
    Datta, A.K., North, S.L., and Kasprzak, K.S. (1994) Effect of nickel(II) and tetraglycine on hydroxylation of the guanine moiety in 2′-deoxyguanosine, DNA, and nucleohistone by hydrogen peroxide, Sci. Total Environ. 148, 207–216.CrossRefGoogle Scholar
  52. 52.
    Kasprzak, K.S., North, S.L., Datta, A.K., and Bal, W. (1995) Enhancement by cysteine and some other natural amino acid ligands of nickel(II)-mediated oxidation of free 2′-deoxyguanosine with H2O2, The Toxicologist 15, 28.Google Scholar
  53. 53.
    Nackerdien, Z., Kasprzak, K.S., Rao, G., Halliwell, B., and Dizdaroglu, M. (1991) Nickel(II)-and cobalt(II)-dependent damage by hydrogen peroxide to the DNA bases in isolated human chromatin, Cancer Res. 51, 5837–5842.Google Scholar
  54. 54.
    Munday, R. (1994) Bioactivation of thiols by one-electron oxidation. Adv. Pharmacol. 27, 237–270.CrossRefGoogle Scholar
  55. 55.
    Cotelle, N., Tremolieres, E., Bernier, J.L., Catteau, J.P., and Henichart, J.P. (1992) Redox chemistry of complexes of nickel(II) with some biologically important peptides in the presence of reduced oxygen species: an ESR study. J. Inorg. Biochem. 46, 7–15.CrossRefGoogle Scholar
  56. 56.
    Bal, W., Djuran, M.I., Margerum, D.W., Gray, Jr., E.T., Mazid, M.A., Tom, R.T., Nieboer, E., and Sadler, P.J. (1994) Dioxygen-induced decarboxylation and hydroxylation of [NiII(Glycyl-Glycyl-L-Histidine)] occurs via NiIII: X-ray crystal structure of [NiII(Glycyl-Glycyl-α-hydroxy-D, L-Histamine)]3H2O, J. Chem. Soc, Chem. Comm. 1889–1890.Google Scholar
  57. 57.
    Datta, A.K., Misra, M., North, S.L., and Kasprzak, K.S. (1992) Enhancement by nickel(II) and L-histidine of 2′-deoxyguanosine oxidation with hydrogen peroxide, Carcinogenesis 13, 283–287CrossRefGoogle Scholar
  58. 58.
    Bal, W. and Kasprzak, K.S., unpublished results.Google Scholar
  59. 59.
    Mirza, S.A., Pressler, M.A., Kumar, M., Day, R.O., and Maroney, M.J. (1993) Oxidation of nickel thiolate ligands by dioxygen, Inorg. Chem. 32, 977–987.CrossRefGoogle Scholar
  60. 60.
    Buonomo, R.M., Font, I., Maguire, M.J., Reibenspies, J.H., Tuntulani, T., and Darensbourg, M.Y. (1995) Study of sulfinate and sulfenate complexes derived from the oxygenation of thiolate sulfur in [l, 5-bis(2-mercapto-2-methylpropyl)-l, 5-diazacyclooctanato(2-)nickel(II), J. Am. Chem. Soc, 117, 963–973.CrossRefGoogle Scholar
  61. 61.
    Bal, W., Moudrianakis, E.N, and Kasprzak, K.S., unpublished results.Google Scholar
  62. 62.
    Thatcher, T.H., MacGaffey, J., Bowen, J., Horowitz, S., Shapiro, D.L., and Gorovsky, M. (1994) Independent evolutionary origin of histone H3.3-like variants of animals and Tetrahymena, Nucl. Acid Res. 22, 180–186.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • W. Bal
    • 1
    • 2
  • K. S. Kasprzak
    • 1
  1. 1.Laboratory of Comparative CarcinogenesisNational Cancer Institute, FCRDCFrederickUSA
  2. 2.Faculty of ChemistryUniversity of WroclawWroclawPoland

Personalised recommendations