Advertisement

Perinatal Effects of Metals and Cancer in Offspring

  • M. A. Sipowicz
  • B. A. Diwan
  • D. Ramljak
  • G. S. Buzard
  • W. Yu
  • M. P. Waalkes
  • J. M. Rice
  • K. S. Kasprzak
  • L. M. Anderson
Chapter
Part of the NATO ASI Series book series (ASEN2, volume 26)

Abstract

Human exposure to metals, environmentally or occupationally, continues to increase in many areas [1]. Such exposures of both men and women may adversely affect their reproductive capability, and impact on fertility and on pregnancy outcomes. Recent reviews are available, covering studies of effects on fertility, spontaneous abortions, premature delivery, low birth weight, and teratogenesis in humans [2, 3], and developmental toxicity in laboratory animals [4]. An even more insidious concern is the possibility of causation of persistent subtle deleterious effects in the offspring, as a result of preconception, transplacental, or neonatal exposure. Neurological effects have been documented, especially for transplacental and neonatal exposure to lead [5] and methylmercury [6]. In addition, over the last several years, evidence has been accumulating from both epidemiological and experimental investigations that perinatal exposure to metals may result in a later increase in risk for cancer. This evidence is reviewed here.

Keywords

Luteinizing Hormone Leydig Cell Umbilical Cord Blood Childhood Cancer Nickel Acetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clarkson, T. (1995) Health effects of metals: a role for evolution? Environ. Health Perspect. 103, (Suppl. 1), 9–12.Google Scholar
  2. 2.
    Savitz, D.A., Sonnenfeld, N.L., and Olshan, A.F. (1994) Review of epidemiologic studies of paternal occupational exposure and spontaneous abortion, Am. J. Industrial Med. 25, 361–383.CrossRefGoogle Scholar
  3. 3.
    Gold, E.B. and Tomich, E. (1994) Occupational hazards to fertility and pregnancy outcome, Occupational Medicine 9, 435–469.Google Scholar
  4. 4.
    Domingo, J.L. (1994) Metal-induced developmental toxicity in mammals:a review, J. Toxicol. Environ. Health 42, 123–141.CrossRefGoogle Scholar
  5. 5.
    Goyer, R.A. (1993) Lead toxicity: current concerns, Environ. Health Perspect. 100, 177–187.CrossRefGoogle Scholar
  6. 6.
    Gilbert, S.G. and Grant-Webster, K.S. (1995) Neurobehavioral effects of developmental methylmercury exposure, Environ. Health Perspect. 103, 135–142.Google Scholar
  7. 7.
    Tomatis, L. (1979) Prenatal exposure to chemical carcinogens and its effect on subsequent generations, Natl. Cancer Inst. Monogr. 51, 159–184.Google Scholar
  8. 8.
    Tomatis, L., Narod, S., and Yamasaki, H. (1992) Transgeneration transmission of carcinogenic risk, Carcinogenesis, 13, 145–151.CrossRefGoogle Scholar
  9. 9.
    Tomatis, L. (1994) Transgeneration carcinogenesis: A review of the experimental and epidemiological evidence. Jpn. J. Cancer Res. 85, 443–454.CrossRefGoogle Scholar
  10. 10.
    Turusov, V.S. and Cardis, E. (1989) Review of experiments on multigeneration carcinogenicity: of design, experimental models and analyses, in Napalkov, N.P., Rice, J.M., Tomatis, L., and Yamasaki, H. (eds.), Perinatal and Multigeneration Carcinogenesis, IARC Scientific Publications, Lyon, pp 105–120.Google Scholar
  11. 11.
    Yamasaki, H., Loktionov, A., and Tomatis, L. (1992) Perinatal and multigenerational effect of carcinogens: possible contribution to determination of cancer susceptibility, Environ. Health Perspect. 98, 39–43.CrossRefGoogle Scholar
  12. 12.
    Bunin, G.R., Rose, P.G., Noller, K.L., and Smith, E. (1993) Carcinogenesis-parental occupation and childhood cancer, in Paul, M. (ed), Occupational and Environmental Reproductive Hazards: A Guide for Clinicians, Williams and Wilkins, Baltimore, pp. 76–88.Google Scholar
  13. 13.
    Olsen, J.H., de Nully Brown, P., Schulgen, G., and Jensen, O.M. (1991) Parental employment at time of conception and risk of cancer in offspring, Eur. J. Cancer 27, 958–965.CrossRefGoogle Scholar
  14. 14.
    O’Leary, L.M., Hicks, A.M., Peters, J.M., and London, S. (1991) Parental occupational exposures and risk of childhood cancer: a review, Am. J. Industrial Med. 20, 17–35.CrossRefGoogle Scholar
  15. 15.
    Nomura, T. (1982) Parental exposure to X rays and chemicals induces heritable tumors and anomalies in mice, Nature 296, 575–577.CrossRefGoogle Scholar
  16. 16.
    Nomura, T. (1989) Role of radiation-induced mutations in multigeneration carcinogenesis, in Napalkov, N.P., Rice, J.M., Tomatis, L., and Yamasaki, H. (eds.), Perinatal and Multigeneration Carcinogenesis, IARC Scientific Publications, Lyon, 96, 375–387.Google Scholar
  17. 17.
    Turusov, V.S., Nikonova, T.V., Parfenov, Y.D. (1990) Increased multiplicity of lung adenomas in five generations of mice treated with benz(a)pyrene when pregnant. Cancer Lett. 55, 227–231.CrossRefGoogle Scholar
  18. 18.
    Anderson, L.M., Kasprzak, K.S., and Rice, J.M. (1994) Preconception exposure of males and neoplasia in their progeny: effects of metals and consideration of mechanisms, in Mattison, D.R. and Olshan, A.F. (eds.), Male-Mediated Developmental Toxicity, Plenum Press, New York, pp. 129–140.CrossRefGoogle Scholar
  19. 19.
    Gandley, R.E., and Silbergeld, E.K. (1994) Male-mediated reproductive toxicity: effects on the nervous system of offspring, in Mattison, D.R. and Olshan, A.F. (eds.), Male-Mediated Developmental Toxicity, Plenum Press, New York, pp. 141–151.CrossRefGoogle Scholar
  20. 20.
    Gardner, M.J., Snee, M.P., Hall, A.J., Powell, C.A., Downes, S., and Terrell, J.D. (1990) Results of case-control study of leukemia and lymphoma among young people near Sellafield nuclear plant in West Cumbria, Br. Med. J. 300, 423–429.CrossRefGoogle Scholar
  21. 21.
    Kinlen, L.J. (1993) Can paternal preconceptional radiation account for the increase of leukemia and non-Hodgkin’s lymphoma in Seascale, Br. Med. J. 306, 1718–1721.CrossRefGoogle Scholar
  22. 22.
    Sorahan, T. and Roberts, P.J. (1993) Childhood cancer and paternal exposure to ionizing radiation: preliminary findings from the Oxford survey of childhood cancers, Am. J. Industrial Med. 23, 343–354.CrossRefGoogle Scholar
  23. 23.
    Doll, R., Evans, HJ., and Darby, S.C. (1994) Paternal exposure not to blame, Nature, 367, 678–680.CrossRefGoogle Scholar
  24. 24.
    Nomura, T. (1990) Of mice and men? Nature, 345, 671.Google Scholar
  25. 25.
    Cattanach, B.M., Patrick, G., Papworth, D., Goodhead, D.T., Hacker, T., Cobb, L., and Whithehill, E. (1995) Investigation of lung tumor induction in BALB/cJ mice following paternal X-irradiation, Int. J. Radiat. Biol. 67, 607–615.CrossRefGoogle Scholar
  26. 26.
    Holliday, R. (1987) The inheritance of epigenetic defects. Science 238, 163–170.CrossRefGoogle Scholar
  27. 27.
    Buckley, J.D. (1992) The aetiology of cancer in the very young, Br. J. Cancer 66 (Suppl. XVIII), S8-S12.Google Scholar
  28. 28.
    Tycko, B. (1994) Genomic imprinting: mechanism and role in human pathology, Am. J. Pathol. 144, 431–443.Google Scholar
  29. 29.
    Chauhan, D.P., Sipowicz, M.A., Boland, C.R., and Anderson, L.M. (1995) Relaxation of the imprinted insulin-like growth factor-II gene expression in mouse lung after preconception urethane treatment, Proc. Am. Assoc. Cancer Res. 36, 541.Google Scholar
  30. 30.
    Kipen, H.M. and Zuber, C. (1994) Occupational and environmental impacts on reproductive health, Ann. N.Y. Acad. Sci. 736, 58–73.CrossRefGoogle Scholar
  31. 31.
    Sokol, R. Z., Madding, C.E., and Swerdloff, R.S. (1985) Lead toxicity and the hypothalamic-pituitary-testicular axis, Biol. Reprod. 33, 722–728.CrossRefGoogle Scholar
  32. 32.
    Thoreux-Manlay, A., Velez de la Calle, J.F., Olivier, M.F., Soufir, J.C., Masse, R., and Pinon-Lataillade, G. (1995) Impairment of testicular endocrine function after lead intoxication in the adult rat, Toxicology, 100, 101–109.CrossRefGoogle Scholar
  33. 33.
    Sokol, R.Z. (1987) Hormonal effects of lead acetate in the male rat: mechanism of action, Biol. Reprod. 37, 1135–1138.CrossRefGoogle Scholar
  34. 34.
    Klein, D., Wan, Y.Y., Kamyab, S., Okuda, H., and Sokol, R.Z. (1994) Effects of toxic lead levels on gene regulation in the male axis: increase in messenger ribonucleic acids and intracellular stores of gonadotrophs within the central nervous system, Biol. Reprod. 50, 802–811.CrossRefGoogle Scholar
  35. 35.
    Nathan, E., Huang, H.F.S., Pogach, L., Giglio, W., Bogden, J.D., and Seebode, J. (1992) Lead acetate does not impair secretion of Sertoli cell function marker proteins in the adult Sprague Dawley rat, Arch. Environ. Health 47, 370–375.CrossRefGoogle Scholar
  36. 36.
    Pinon-Lataillade, G., Thoreux-Manlay, A., Coffigny, H., Monchaux, G., Masse, R., and Soufir, J.C. (1993) Effect of ingestion and inhalation of lead on the reproductive system and fertility of adult male rats and their progeny, Hum. Exp. Toxicol. 12, 165–172.CrossRefGoogle Scholar
  37. 37.
    Sokol, R.Z., Okuda, H., Nagler, H.M., and Berman, N. (1994) Lead exposure in vivo alters the fertility potential of sperm in vitro, Toxicol. Appl. Pharmacol. 124, 310–316.CrossRefGoogle Scholar
  38. 38.
    Foster, W.G., McMahon, A., YoungLai, E.V., Hughes, E.D., and Rice, D.C. (1993) Reproductive endocrine effects of chronic lead exposure in the male cynomolgus monkey, Reprod. Toxicol. 7, 203–209.CrossRefGoogle Scholar
  39. 39.
    Cullen, M.R., Kayne, R.D., and Robins, J.M. (1984) Endocrine and reproductive dysfunction in men associated with occupational inorganic lead intoxication, Arch. Environ. Health 39, 431–440.CrossRefGoogle Scholar
  40. 40.
    Assennato, G., Paci, C., Baser, M.E., Molinini, R., Candela, R.G., Altamura, B.M., and Giorgino, R. (1987) Sperm count suppression without endocrine dysfunction in lead-exposed men. Arch. Environ. Health 42, 124–127.CrossRefGoogle Scholar
  41. 41.
    Waalkes, M.P., Rehm, S., and Devor, D.E. (1996) Effects of continuous testosterone exposure on the oncogenic potential of cadmium in the male Fischer rat, Toxicologist 30, 91.Google Scholar
  42. 42.
    Setchell, B.P., Tao, L., and Zupp, J.L. (1996) The penetration of chromium-EDTA from blood plasma into various compartments of rat testes as an indicator of function of the blood-testis barrier after exposure of the testes to heat, J. Reprod. Fertil. 106, 125–133.CrossRefGoogle Scholar
  43. 43.
    Murthy, R.C., Saxena, D.K., Gupta, S.K., and Chandra, S.V. (1991) Ultrastructural observations in testicular tissue of chromium-treated rats, Reprod. Toxicol. 5, 443–447.CrossRefGoogle Scholar
  44. 44.
    Danielsson, B.R.G., Dencker, L., Lindgren, A., and Tjalve, H. (1984) Accumulation of toxic metals in male reproduction organs, Arch. Toxicol. 7 (Suppl.7), 177–180.CrossRefGoogle Scholar
  45. 45.
    Behari, J., Chandra, S.V., and Tandon, S.K. (1978) Comparative toxicity of trivalent and hexavalent chromium to rabbits, Acta Biol. Med. Germ. 37, 463–468.Google Scholar
  46. 46.
    Shelby, M.D., Bishop, J.B., Mason, J.M., and Tindall, K.R. (1993) Fertility, reproduction, and genetic disease: studies on the mutagenic effects of environmental agents on mammalian germ cells, Environ. Health Perspect. 100, 283–291.CrossRefGoogle Scholar
  47. 47.
    Bonde, J.P. (1993) Male subfecundity and the welding of metals, Int. J. Andrology 16 (Suppl. 1), 2–29.CrossRefGoogle Scholar
  48. 48.
    Knudsen, L.E., Boisen, T., Christensen, J.M., Jelsen, J.E., Jensen, G.E., Jensen, J.C., Lundgren, K., Lundsteen, C., Pedersen, B., Wassermann, K., Wilhardt, P., Wulf, H.C., and Zebitz, U. (1992) Biomonitoring of genotoxic exposure among stainless steel welders, Mutat. Res. 279, 129–143.CrossRefGoogle Scholar
  49. 49.
    Winder, C. (1993) Lead, reproduction and development, Neuro Toxicology 14, 303–318.Google Scholar
  50. 50.
    Koizumi, T. and Li, Z.G. (1992) Role of oxidative stress in single-dose, cadmium-induced testicular cancer, J. Toxicol. Environ. Health 37, 25–36.CrossRefGoogle Scholar
  51. 51.
    Shiraishi, N., Hochadel, J.F., Coogan, T.P., Koropatnick, J., and Waalkes, M.P. (1995) Sensitivity to cadmium-induced genotoxicity in rat testicular cells is associated with minimal expression of the metallothionein gene, Toxicol. Applied Pharmacol. 130, 229–236.CrossRefGoogle Scholar
  52. 52.
    Miller, C.A. and Costa, M. (1989) Characterization of DNA-protein complexes induced in intact cells by the carcinogen chromate, Mol. Carcinogenesis 1, 125–133.Google Scholar
  53. 53.
    Kasprzak, K.S. (1995) Possible role of oxidative damage in metal induced carcinogenesis, Cancer Invest. 13, 411–430.CrossRefGoogle Scholar
  54. 54.
    Costa, M. Zhitkovich, A., and Toniolo, P. (1993) DNA-protein cross-links in welders: molecular implications, Cancer Res. 53, 460–463.Google Scholar
  55. 55.
    Cohen, M.D., Kargacin, B., Klein, C., and Costa, M. (1993) Mechanisms of chromium carcinogenicity and toxicity, Crit. Rev. Toxicol. 23, 255–281.CrossRefGoogle Scholar
  56. 56.
    Hneihen, A.S., Standeven, A.M., and Wetterhahn, K.E. (1993) Differential binding of chromium(VI) and chromium(III) complexes to salmon sperm nuclei and nuclear DNA and isolated calf thymus DNA, Carcinogenesis 14, 1795–1803.CrossRefGoogle Scholar
  57. 57.
    Bridgewater, L.C., Manning, F.C., Woo, E.S., and Patierno, S.R. (1994) DNA polymerase arrest by adducted trivalent chromium, Mol. Carcinogenesis 9, 122–133.CrossRefGoogle Scholar
  58. 58.
    Snow, E.T. (1991) A possible role for chromium(III) in genotoxicity, Environ. Health Perspect. 92, 75–81.CrossRefGoogle Scholar
  59. 59.
    Sugden, K.D., Geer, R.D., and Rogers, S.J. (1992) Oxygen radical-mediated DNA damage by redox-active Cr(III) complexes, Biochemistry 31, 11626–11631.CrossRefGoogle Scholar
  60. 60.
    Tsou, T., Chen, C., Liu, T. and Yang, J. (1996) Induction of 8-hydroxydeoxyguanosine in DNA by chromium(III) plus hydrogen peroxide and its prevention by scavengers, Carcinogenesis 17, 103–108.CrossRefGoogle Scholar
  61. 61.
    Dudek, E.J. and Wetterhahn, K.E. (1994) Chromium(VI)-induced cytotoxicity and DNA damage occur via two distinct pathways: an oxidative pathway and direct chromium-DNA interaction, in Collery, P., Poirier, L.A., Littlefield, N.A., and Etienne, J.C. (eds.), Metal Ions in Biology and Medicine, John Libbey Eurotex, Paris, pp. 175–180.Google Scholar
  62. 62.
    Friedman, J., Shabtai, F., Levy, L.S., and Djaldetti, M. (1987) Chromium chloride induce-s chromosomal aberrations in human lymphocytes via direct action, Mutat. Res. 191, 207–210.CrossRefGoogle Scholar
  63. 63.
    Hartwig, A., Mullenders, L.H.F., Schlepegrell, R., Kasten, U., and Beyersmann, D. (1994) Nickel(II) interferes with the incision step in nucleotide excision repair in mammalian cells, Cancer Res. 54, 4045–4051.Google Scholar
  64. 64.
    Lynn, S., Yew, F.H., Hwang, J.W., Tseng, M.J., and Jan, K.Y. (1994) Glutathione can rescue the inhibitory effects of nickel on DNA ligation and repair synthesis, Carcinogenesis 15, 2811–2816.CrossRefGoogle Scholar
  65. 65.
    Snow, E.T., Xu, L.S., and Kinney, P.L. (1993) Effects of nickel ions on polymerase activity and fidelity during DNA replication in vitro, Chem. Biol. Interactions 88, 155–173.CrossRefGoogle Scholar
  66. 66.
    Sunderman, F.W. (1993) Search for molecular mechanisms in the genotoxicity of nickel, Scand. J. Environ. Health 19 (Suppl. 1), 75–80.Google Scholar
  67. 67.
    Costa, M. (1993) Molecular targets of nickel and chromium in human and experimental systems, Scand. J. Environ. Health 19 (Suppl. 1), 71–74.CrossRefGoogle Scholar
  68. 68.
    Roy, N.K. and Rossman, T.G. (1992) Mutagenesis and comutagenesis by lead compounds, Mutat. Res. 298, 97–103.CrossRefGoogle Scholar
  69. 69.
    de Lamirande, E. and Gagon, C. (1995) Impact of reactive oxygen species on spermatozoa: a balancing act between beneficial and detrimental effects, Human Reprod. 10, (Suppl. 1) 15–21.CrossRefGoogle Scholar
  70. 70.
    Shiraishi, N. and Waalkes, M.P. (1996) Acquired tolerance to cadmium-induced toxicity in rodent testes, Toxic Substance Mech. 15, 27–42.Google Scholar
  71. 71.
    Abshire, M.K. and Waalkes, M.P. (1994) Cadmium-induced oxidative tissue damage in mice: role of mouse strain and tissue metallothionein levels, Toxic Substances J. 13, 141–152.Google Scholar
  72. 72.
    Shen, Y. and Sangiah, S. (1995) Na+, K+-ATPase, glutathione, and hydroxyl free radicals in cadmium chloride-induced testicular toxicity in mice, Arch. Environ. Contam. Toxicol. 29, 174–179.CrossRefGoogle Scholar
  73. 73.
    Xie, J., Funakoshi, T., Shimada, H., and Kojima, S. (1995) Effects of chelating agents on testicular toxicity in mice caused by acute exposure to nickel, Toxicology 103, 147–155.CrossRefGoogle Scholar
  74. 74.
    Latham, K.E., McGrath, J., and Solter, D. (1995) Mechanistic and developmental aspects of genetic imprinting in mammals, Int. Rev. Cytol. 160, 53–98.CrossRefGoogle Scholar
  75. 75.
    Johansson, L. and Pellicciari C.E. (1988) Lead-induced changes in the stabilization of the mouse sperm chromatin, Toxicology 51, 11–24.CrossRefGoogle Scholar
  76. 76.
    Lee, Y.W., Klein, C.B., Kargacin, B., Salnikow, K., Kitahara, J., Dowjat, K., Zhitkovich, A., Christie, N.T., and Costa, M. (1995) Carcinogenic nickel silences gene expression by chromatin condensation and DNA methylation: a new model for epigenetic carcinogens, Mol. Cell. Biol. 15, 2547–2557.Google Scholar
  77. 77.
    Saxena, K.D., Murthy, R.C., Lal, B., Srivastava, R.S., and Chandra, S.V. (1990) Effects of hexavalent chromium on testicular maturation in the rat, Reprod. Toxicol. 4, 223–228.CrossRefGoogle Scholar
  78. 78.
    Singhai, R.L., Vijayvargiya, R., and Shukla, G.S. (1985) Toxic effects of cadmium and lead on reproductive function, in Thomas, J.A., Korach, K.S., and McLachlan, J.A. (eds.) Endocrine Toxicology, Raven Press, New York, pp. 149–179.Google Scholar
  79. 79.
    Beyersmann, D., Block, C., and Malviya, A.N. (1994) Effects of cadmium on nuclear protein kinase C., Environ. Health Perspect. 102, 177–180.Google Scholar
  80. 80.
    Rajaram, R. Nair, B. U., and Ramasami, T. (1995) Chromium(III) induced abnormalities in human lymphocyte cell proliferation: evidence for apoptosis, Bioch. Biophys. Res. Comm. 210, 434–440.CrossRefGoogle Scholar
  81. 81.
    Korpela, H., Loueniva, R., Yrjanheikki, E., and Kauppila, A. (1986) Lead and cadmium concentrations in maternal and umbilical cord blood, amniotic fluid, placenta, and amniotic membranes, Am. J. Obstet. Gynecol. 155, 1086–1089.Google Scholar
  82. 82.
    Graziano, J.H., Popovac, D., Factor-Litvak, P., Shrout, P., Kline, J., Murphy, M.J., Zhao, Y.H., Mehmeti, A., Ahmedi, X., Rajovic, B., Zvicer, Z., Nenezic, D.U., Lolacono, N.J., and Stein, Z. (1990) Determinants of elevated blood lead during pregnancy in a population surrounding a lead smelter in Kosovo, Yugoslavia, Environ. Health Perspect. 89, 95–100.CrossRefGoogle Scholar
  83. 83.
    Ong, C.N., Chia, S.E., Foo, S.C., Ong, H.Y., Tsakok, M., and Liouw, P. (1993) Concentrations of heavy metals in maternal and umbilical cord blood, BioMetals 6, 61–66.CrossRefGoogle Scholar
  84. 84.
    Baranowska, I. (1995) Lead and cadmium in human placentas and maternal and neonatal blood (in a heavily polluted area) measured by graphite furnace atomic absorption spectrometry, Occup. Environ. Med. 52, 229–232.CrossRefGoogle Scholar
  85. 85.
    Goyer, R.A. (1990) Transplacental transport of lead, Environ. Health Perspect. 89, 101–105.CrossRefGoogle Scholar
  86. 86.
    Tsuchiya, H., Mitani, K., Kodama, K., and Nakata, T. (1984) Placental transfer of heavy metals in normal pregnant Japanese women, Arch. Environ. Health 39, 11–17.CrossRefGoogle Scholar
  87. 87.
    Soong, Y.J., Tseng, R., Liu, C., and Lin, P.W. (1991) Lead, cadmium and mercury levels in maternal and fetal cord blood, Taiwan I Hsueh Tsa Chic 190, 59–65.Google Scholar
  88. 88.
    Levin, A.A., Plautz, J.R., Di Sant’Agnese, P.A., and Miller, R.K. (1981) Cadmium: placental mechanisms of fetal toxicity, Placenta Suppl 3, 303–318.Google Scholar
  89. 89.
    Goyer, R.A. (1991) Transplacental transfer of cadmium and fetal effects. Fund. Appl. Toxicol. 16, 22–23.CrossRefGoogle Scholar
  90. 90.
    Beech, R.S., Gershwin, M.E., and Hurley, L.S. (1982) Gestational zinc deprivation in mice: persistence of immunodeficiency for three generations, Science 218, 469–471.CrossRefGoogle Scholar
  91. 91.
    Goyer, R.A., Haust, M.D., and Cherian, M.G. (1992) Cellular localization of metallothionein in human term placenta, Placenta 13, 349–355.CrossRefGoogle Scholar
  92. 92.
    Breen, J.G., Eisenmann, C., Horowitz, S., and Miller, R.K. (1994) Cell-specific increases in metallothionein expression in the human placenta perfused with cadmium, Reprod. Toxicol. 8, 297–306.CrossRefGoogle Scholar
  93. 93.
    Breen, J.G., Nelson, E., and Miller, R.K.(1995) Cellular adaptation to chronic cadmium exposure: intracellular localization of metallothionein protein in human trophoblast cells (JAr), Teratology 51, 266–272.CrossRefGoogle Scholar
  94. 94.
    Bellinger, D. (1994) Teratogen update: lead, Teratology 50, 367–373.CrossRefGoogle Scholar
  95. 95.
    Danielsson, B.R., Hassonn, E., and Dencker, L. (1982) Embryotoxicity of chromium: distribution in pregnant mice and effects on embryonic cells in vitro, Arch. Toxicol. 51, 233–245.Google Scholar
  96. 96.
    Wallach, S. and Verch, R.L. (1984) Placental transfer of chromium, J. Am. Coll. Nutr. 3, 69–74.Google Scholar
  97. 97.
    Iijima, S., Matsumoto, N., and Lu, C.C. (1983) Transfer of chromium chloride to embryonic mice and changes in the embryonic mouse neuroepithelium, Toxicology 26, 257–265.CrossRefGoogle Scholar
  98. 98.
    Olsen, L. and Jonsen, J. (1979) Whole-body autoradiography of 63Ni in mice throughout gestation, Toxicology 12, 165–172.CrossRefGoogle Scholar
  99. 99.
    Sunderman, F.W., Shen, S.K., Mitchell, J.M., Allpass, P.R., and Damjanov, I. (1978) Embryotoxicity and fetal toxicity of nickel in rats, Toxicol. Appl. Pharmacol. 43, 381–390.CrossRefGoogle Scholar
  100. 100.
    Sunderman, F. W., Allpass, P.R., Mitchell, J.M., Baselt, R.C. and Albert, D.M. (1979) Eye malformations in rats: induction by prenatal exposure to nickel carbonyl, Science 203, 550–553.CrossRefGoogle Scholar
  101. 101.
    Autrup, H. (1993) Transplacental transfer of genotoxins and transplacental carcinogenesis, Environ. Health Perspect. 101 (Suppl. 2), 33–38.Google Scholar
  102. 102.
    Shu, X.O., Gao, Y.T., Brinton, L.A., Linet, M.S., Tu, J.T., Zheng, W., and Fraumeni, J.F. (1988) A population-based case-control study of childhood leukemia in Shanghai, Cancer 62, 635–644.CrossRefGoogle Scholar
  103. 103.
    Buckley, J.D., Robison, L.L., Swotinsky, R., Garabrant, D.H., LeBeau, M., Manchester, P., Nesbit, M.E., Odon, L., Peters, J.M., Woods, W.G., and Hammond, G.D. (1989) Occupational exposures of parents of children with acute nonlymphocytic leukemia: a report from the Childrens Cancer Study Group, Cancer Res. 49, 4030–4037.Google Scholar
  104. 104.
    Buckley, J.D., Sather, H., Ruccione, K., Rogers, P.C., Haas, J.E., Henderson, B.E., and Hammond, G.D. (1989) A case-control study of risk factors for hepatoblastoma, Cancer 64, 1169–1176.CrossRefGoogle Scholar
  105. 105.
    IARC (1990) IARC Monographs on the Evaluation of Carcinogenic Risk to Humans. Vol. 49 Chromium, Nickel, and Welding, IARC, Lyon.Google Scholar
  106. 106.
    Sunderman, F.W., McCully, K.S., and Rinehimer, L.A. (1981) Negative test for transplacental carcinogenicity of nickel subsulfide in Fischer rats, Res. Comm. Chem. Pathol. Pharmacol. 31, 545–554.Google Scholar
  107. 107.
    Jacobsen, N., Alfheim, I., and Jonsen, J. (1978) Nickel and strontium distribution in some tissues; passage through placenta and mammary glands, Res. Comm. Chem. Pathol. Pharmacol. 20, 571–584.Google Scholar
  108. 108.
    Diwan, B.A., Kasprzak, K.S., and Rice, J.M. (1992) Transplacental carcinogenic effects of nickel(II) acetate in the renal cortex, renal pelvis and adenohypophysis in F344/NCr rats, Carcinogenesis 13, 1351–1357.CrossRefGoogle Scholar
  109. 109.
    Kasprzak, K.S., Diwan, B.A., Konishi, N., Misra, M., and Rice, J.M. (1990) Initiation by nickel acetate and promotion by sodium barbital of renal cortical epithelial tumors in male F344 rats, Carcinogenesis 11, 647–652.CrossRefGoogle Scholar
  110. 110.
    Ramljak, D., Buzard, G.S., Weghorst, CM., Diwan, B.A., Anderson, L.M., Ward, J.M., Jones, T.L., and Rice, J.M. (1995) Defective phosphorylation of the retinoblastoma (Rb) gene product in rat pituitary tumors induced transplacentally by nickel acetate, Proc. Am. Assoc. Cancer Res. 36, 578.Google Scholar
  111. 111.
    Higinbotham, K.G., Rice, J.M., Diwan, B.A., Kasprzak, K.S., Reed, C.D., and Perantoni, A.O. (1992) GGT to GTT transversions in codon 12 of the K-ras oncogene in rat renal sarcomas induced with nickel subsulfide or nickel subsulfide/iron are consistent with oxidative damage to DNA, Cancer Res. 52, 4747–4751.Google Scholar
  112. 112.
    Kasprzak, K.S., Diwan, B.A., Rice, J.M., Misra, M., Riggs, C.W., Olinski, R., and Dizdaroglu, M. (1992) NiCkel(II)-mediated oxidative DNA base damage in renal and hepatic chromatin of pregnant rats and their fetuses. Possible relevance to carcinogenesis, Chem. Res. Toxicol. 5, 809–815.CrossRefGoogle Scholar
  113. 113.
    Waalkes, M.P., Diwan, B.A., Ward, J.M., Devor, D.E., and Goyer, R.A. (1995) Renal tubular tumors and atypical hyperplasia in B6C3F1 mice exposed to lead acetate during gestation and lactation occur with minimal chronic nephropathy, Cancer Res. 55, 5265–5271.Google Scholar
  114. 114.
    Ronis, M.J.J., Badger, T.M., Shema, S.J., Roberson, P.K., and Shaikh, F. (1996) Reproductive toxicity and growth effects in rats exposed to lead at different periods during development, Toxicol. Appl. Pharmacol. 136, 361–371.CrossRefGoogle Scholar
  115. 115.
    Jacobs, A.J., Marchevsky, A., Gordon, R.E., Deppe, G., and Cohen, C.J. (1980) Oat cell carcinoma of the uterine cervix in a pregnant women treated with cis-diamminedichloroplatinum, Gynecol. Oncol. 9, 405–410.CrossRefGoogle Scholar
  116. 116.
    Malfetano, J.H. and Goldkrand, J.W. (1990) cis-Platinum combination chemotherapy during pregnancy for advanced epithelial ovarian carcinoma, Obstet. Gynecol. 75, 545–547.Google Scholar
  117. 117.
    Raffles, A., Williams, J., Costeloe, K., and Clark, P.(1989) Transplacental effects of maternal cancer chemotherapy. Case report, Br. J. Obstet. Gynecol. 96, 1099–1100.CrossRefGoogle Scholar
  118. 118.
    Turnbull, D., Popescu, N.C., DiPaolo, J.M., and Myhr, B.C. (1979) cis-Platinum(II) diamine dichloride causes mutations, transformation, and sister-chromatid exchanges in cultured mammalian cells, Mutat. Res. 66, 267–275.CrossRefGoogle Scholar
  119. 119.
    Taylor, R.T., Carver, J.H., Hanna, M.L., and Wanders, D.L. (1979) Platinum-induced mutations to 8-azaguanine resistance in Chinese hamster ovary cells, Mutat. Res. 67, 65–80.CrossRefGoogle Scholar
  120. 120.
    Kopf-Meier, P. (1983) Stage of pregnancy-dependent transplacental passage of l95mPt after cis-platinum treatment, Eur. J. Cancer. Clin. Oncol. 19, 533–536.CrossRefGoogle Scholar
  121. 121.
    Leopold, W.R., Miller, E.C., and Miller, J.A. (1979) Carcinogenicity of antitumor cis-platinum(II) coordination complexes in the mouse and rat, Cancer Res. 39, 913–918.Google Scholar
  122. 122.
    Kempf, S.R. and Ivankovic S. (1986) Carcinogenic effect of cisplatin (cis-diamminedichloroplatinum(II), CDDP) in BD IX rats, J. Cancer. Res. Clin. Oncol. 111, 133–136.CrossRefGoogle Scholar
  123. 123.
    Shamkhani, H., Anderson, L.M., Henderson, C.E., Moskal, T.J., Runowicz, C.D., Dove, L.F., Jones, A.B., Chaney, S.G., Rice, J.M., and Poirier, M.C. (1994) DNA adducts in human and patas monkey maternal and fetal tissues induced by platinum drug chemotherapy, Reprod. Toxicol. 8, 207–216.CrossRefGoogle Scholar
  124. 124.
    Diwan, B.A., Anderson,, L.M., Rehm, S., and Rice, J.M. (1993) Transplacental carcinogenicity of cisplatin: initiation of skin tumors and induction of other preneoplastic and neoplastic lesions in SENCAR mice, Cancer Res. 53, 3874–3876.Google Scholar
  125. 125.
    Munoz, E.F., Diwan, B.A., Calvert, R.J., Weghorst, C.M., Rice, J.M., and Buzard, G.S. (1996) Transplacental mutagenicity of cis-platin. H-ras codon 12 and 13 mutations in skin tumors of SENCAR mice, Carcinogenesis (in press).Google Scholar
  126. 126.
    Nelson, M.A., Futscher, B.W., Loew, M.R., and Bowden, G.T. (1992) Analysis of the Harvey ras gene in cisplatin-initiated mouse skin tumors by polymerase chain reaction and direct DNA sequencing, Cancer Lett. 65, 27–33.CrossRefGoogle Scholar
  127. 127.
    Diwan, B.A., Anderson, L.M., Ward, J.M., Henneman, J.R., and Rice, J.M. (1995) Transplacental carcinogenesis by cisplatin in F344/NCr rats: promotion of kidney tumors by postnatal administration of sodium barbital, Toxicol. Appl. Pharmacol. 132, 115–121.CrossRefGoogle Scholar
  128. 128.
    Giurgiovich, A.J., Diwan, B.A., Lee, K.B., Anderson, L.M., Rice, J.M., and Poirier, M.C. (1996) Cisplatin-DNA adducts formation in maternal and fetal rat tissues after transplacental cisplatin exposure, Carcinogenesis (in press).Google Scholar
  129. 129.
    Dencker, L., Danielsson, B., Khayat, A., and Lindgren, A. (1983) Disposition of metals in the embryo and fetus, in Clarkson, T.W., Nordberg, G.F., and Sager, P.R. (eds.) Reproductive and Developmental Toxicity of Metals, Plenum Press, New York, pp. 607–631.CrossRefGoogle Scholar
  130. 130.
    Lindeman, J.H., Lentjes, E.G., and Berger, H.M. (1995) Diminished protection against copper-induced lipid peroxidation by cord blood plasma of preterm and term infants, J. Parenter. Enterai. Nutr. 19, 373–375.CrossRefGoogle Scholar
  131. 131.
    Oskarsson, A., Hallen, I.P., and Sundberg, J. (1995) Exposure to toxic elements via breast milk, Analyst 120, 765–770.CrossRefGoogle Scholar
  132. 132.
    Hallen, I.P., Jorhem, L., and Oskarsson, A. (1995) Placental and lactational transfer of lead in rats: a study on the lactational process and effects on offspring, Arch. Toxicol. 69, 596–602.CrossRefGoogle Scholar
  133. 133.
    Hallen, LP., Jonsson, S., Karlsson, M.O., and Oskarsson, A. (1996) Toxicokinetics of lead in lactating and nonlactating mice, Toxicol. Applied. Pharmacol. 136, 342–347.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • M. A. Sipowicz
    • 1
  • B. A. Diwan
    • 1
    • 2
  • D. Ramljak
    • 1
  • G. S. Buzard
    • 1
  • W. Yu
    • 1
  • M. P. Waalkes
    • 1
  • J. M. Rice
    • 1
  • K. S. Kasprzak
    • 1
  • L. M. Anderson
    • 1
  1. 1.Laboratory of Comparative Carcinogenesis, Division of Basic SciencesNational Cancer InstituteUSA
  2. 2.Intramural Research Support Program, SAIC FrederickFrederick Cancer Research and Development CenterFrederickUSA

Personalised recommendations