Advertisement

Modeling and Optimization of Single Screw Extrusion for Thermoplastics

  • J. F. Agassant
  • B. Vergnes
  • E. Wey
Chapter
  • 465 Downloads
Part of the NATO ASI Series book series (NSSE, volume 302)

Summary

The single-screw extrusion of thermoplastics has been significantly improved during the last thirty years : the main advances are due to a better understanding of the physical phenomena occuring during the process, which has allowed mathematical modelling of the different functional zones : solid conveying, melting, pumping... Computation softwares are today capable of a complete description of the flow from the hopper to the die and permit to optimize process conditions or to solve scale-up problems.

Keywords

Viscous Dissipation Solid Polymer Leakage Flow Melting Rate Screw Speed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agassant, J.F., Avenas, P., Sergent, J. Ph., Carreau, P. (1991) Polymer Processing, Principles and Modeling, Hanser Publishers, MünchenGoogle Scholar
  2. Agur, E.E. and Vlachopoulos, J. (1982) Polym. Eng. Sci., 22, 1084CrossRefGoogle Scholar
  3. Booy, M.L. (1981) Polym. Eng. Sci. 21, 93CrossRefGoogle Scholar
  4. Chung, C.I. (1968) Mod. Plast., 45, 178Google Scholar
  5. Chung, C.I. (1975) Polym. Eng. Sci., 15, 29CrossRefGoogle Scholar
  6. Chung, K.H. and Chung, C.I. (1983) Polym. Eng. Sci. 23, 191CrossRefGoogle Scholar
  7. Darnell, W.H. and Mol, E.A.J. (1956) Soc. Plast. Engs. J., 12, 20Google Scholar
  8. Donovan, R.C. (1971) Polym. Eng. Sci., 11, 247CrossRefGoogle Scholar
  9. Edmonson, I.R. and Fenner, R.T. (1975) Polymer 16, 48Google Scholar
  10. Fang, S. Chen, L. and Zhu, F. (1991) Polym. Eng. Sci., 31, 1117CrossRefGoogle Scholar
  11. Fenner, R.T. (1974) Plast. and Polym., 6, 114Google Scholar
  12. Hami, M.L. and Pittman, J.F.T. (1980) Polym. Eng. Sci. 20, 339CrossRefGoogle Scholar
  13. Kacir, L. and Tadmor, Z. (1971) Polym. Eng. Sci., 11, 247CrossRefGoogle Scholar
  14. Kühnle, H. (1982) Kunstoffe, 72, 267Google Scholar
  15. Kühnle, H. (1986) J. Polym. Eng., 6, 51CrossRefGoogle Scholar
  16. Lafleur, P.G. and Amellal, K. (1993) Plast. Rubber Proc. Appl., 19Google Scholar
  17. Lindt, J.T. (1976) Polym. Eng. Sci., 16, 284CrossRefGoogle Scholar
  18. Lindt, J.T. (1981) Polym. Eng. Sci., 21, 1162CrossRefGoogle Scholar
  19. Lindt, J.T. and Elbirli, B. (1985) Polym. Eng. Sci., 255Google Scholar
  20. Losson, J.M. (1974) 32th ANTEC, 231Google Scholar
  21. Maddock, B.H. (1959) Soc. Plast. Engs. J., 15, 383Google Scholar
  22. Maillefer, C. (1959) Swiss patent n° 363149Google Scholar
  23. McKelvey, J.M. (1962) “Polymer Processing”, Wiley and Sons, New YorkGoogle Scholar
  24. Mennig, G. (1981) Kunststoffe, 71, 359Google Scholar
  25. Nebrensky, J., Pittman, J.F.T. and Smith, J.M. (1973) Polym. Eng. Sci., 13, 209CrossRefGoogle Scholar
  26. Pearson, J.R.A. (1985) “Mechanics of Polymer Processing”, ElsevierGoogle Scholar
  27. Pinto, C. and Tadmor, Z. (1970) Polym. Eng. Sci., 10, 279CrossRefGoogle Scholar
  28. Pittman, J.F.T. and Rashid, K. (1985) J. Polym. Eng. 5, 1CrossRefGoogle Scholar
  29. Potente, H. (1983) Rheol. Acta, 22, 387CrossRefGoogle Scholar
  30. Potente, H. Ansahl, J. Wittemeier, R. (1990) Int. Polym. Proc. 5, 208Google Scholar
  31. Rauwendaal, C. (1986) “Polymer Extrusion”, Hanser, München,Google Scholar
  32. Tadmor, Z. and Klein, I. (1970) “Engineering principles of plasticating extrusion”, Von Nostrand Reinhold Company, New YorkGoogle Scholar
  33. Tadmor, Z. and Broyer, E. (1972) Polym. Eng. Sci., 12, 378CrossRefGoogle Scholar
  34. Vergnes, B., Wey, E. and Agassant, J.F. (1983) Caout. et Plast., 633, 81Google Scholar
  35. Vincelette, A., Guerrero, C.S., Carreau, P.J., Lafleur, P.G. (1989) Int. Polym. Proc. 4, 232Google Scholar
  36. Wey, E. (1984) “Etude de la plastification des polymères thermoplastiques en injection” Thèse de Docteur Ingénieur, Ecole des Mines de Paris.Google Scholar
  37. Zavadsky, E. and Karnis, J. (1984) Rheol. Acta, 24, 556CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • J. F. Agassant
    • 1
  • B. Vergnes
    • 1
  • E. Wey
    • 1
  1. 1.Centre de Mise en Forme des Matériaux, Unité de Recherche Associée au CNRS n° 1374Ecole Nationale Supérieure des Mines de ParisSophia Antipolis CedexFrance

Personalised recommendations