Advertisement

Simulation of Thermoforming and Blowmolding — Theory and Experiments

  • M. O. Ghafur
  • B. Koziey
  • J. Vlachopoulos
Chapter
Part of the NATO ASI Series book series (NSSE, volume 302)

Abstract

The increased use of polymers in the fabrication of various products ranging from beverage bottles, automotive fuel tanks, food trays, to refrigerator liners has made it important that minimum requirements on part thicknesses be met when forming plastic parts. The two primary industrial processes for forming both small and large, thin walled plastic parts are thermoforming and blowmolding. Generally, during these processes, polymers behave in a viscoelastic manner and their deformation process involves large deformations, large strains, large strain rates, contact between the hot polymer and the mold wall, and physical instabilities may also occur during inflation. However, in thermoforming and blowmolding, especially when plug assisted, the process occurs rapidly and at a strain rate high enough for the elastic effects to be dominant and there is no time for viscous dissipation. The polymer undergoes a large elastic deformation.

Keywords

Thickness Distribution Constitutive Relationship Mold Cavity Mold Surface Ogden Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    “T-FORMCAD User’s Manuals”, Polydynamics Inc., 1685 Main Street West, Hamilton, Ontario, L8S 1G5, Canada (1994).Google Scholar
  2. (2).
    Throne, J. L., “Thermoforming”, Hanser, New York (1987).Google Scholar
  3. (3).
    Crawford, R. J., “Plastics Engineering”, 2nd Ed., Pergamon, New York (1987).Google Scholar
  4. (4).
    Beall, G. J., “Hollow plastic part processes”, The Association of Rotational Molders, (1993).Google Scholar
  5. (5).
    “Encyclopaedia of Polymer Science and Engineering”, McGraw-Hili Inc., New York (1989).Google Scholar
  6. (6).
    Rosato, D. V., Rosato, D. V., “Blow Molding Handbook”, Hanser, New York (1989).Google Scholar
  7. (7).
    Sheryshev M. A., Zhogolev, I. V., Salazkin, K. A., Soviet Plast., 11, 30 (1969).Google Scholar
  8. (8).
    Tadmor, Z., Gogos, C. G. ,“Principles of Polymer Processing”, John Wiley & Sons, New York (1979).Google Scholar
  9. (9).
    Rosenzweig, N., Narkis, M., Tadmor, Z., Polym. Eng. Sci., 19, 946 (1979).CrossRefGoogle Scholar
  10. (10).
    Crawford, R. J., Lui, S. K. L., Europ. Polymer J., 18, 699 (1982).CrossRefGoogle Scholar
  11. (11).
    Williams J. G., J. Strain Anal., 5, 49 (1970).CrossRefGoogle Scholar
  12. (12).
    Nied, H. F., Taylor, C. A., deLorenzi, H. G., Polym. Eng. Sci., 30, 1314 (1990).CrossRefGoogle Scholar
  13. (13).
    deLorenzi, H. G., Nied, H. F., “Finite Element Simulation of Thermoforming and Blowmolding”, Chapter 5 in “Progress in Polymer Processing”, Isayev, A. I., (ed.), Hanser, Munich (1991).Google Scholar
  14. (14).
    Zamani, N. G., Watt, D. F., Estaghamatian M., Int. J. Numer. Methods Eng., 28, 2681 (1990).CrossRefGoogle Scholar
  15. (15).
    Menges, G., Weinand, D., Kunststoffe, 78, 456 (1988).Google Scholar
  16. (16).
    Oden, J. T., Sato, T., Int. J. Solids Struct., 3, 471 (1967).CrossRefGoogle Scholar
  17. (17).
    Warby, M. K., Whiteman, J. R., Comput. Methods Appl. Mech. Eng., 68, 33 (1988).ADSzbMATHCrossRefGoogle Scholar
  18. (18).
    Oden, J. T., “Finite Elements of Non-Linear Continua”, McGraw-Hill, New York (1972).Google Scholar
  19. (19).
    Song, W. N. Mirza, F. A. Vlachopoulos, J. J. Rheol., 35, 93 (1991).ADSCrossRefGoogle Scholar
  20. (20).
    Song, W. N., Mirza, F. A., Vlachopoulos, J., Int. Polym. Proc., 3, 248 (1991).Google Scholar
  21. (21).
    Igl, S. A., Osswald, T. A., SPE AINTEC Tech Papers, 50, 122 (1992).Google Scholar
  22. (22).
    Vantal, M. H., Bellet, M., Monasse, B., Jammet, J. C., Andro, R., Proc. PPS-10, Akron, Ohio, 317 (1994).Google Scholar
  23. (23).
    Cogswell, F. N., Webb, P. C., Weeks, J. C., Plastics and Polymers, 340 (1971).Google Scholar
  24. (24).
    Mitsoulis, E., Heng, F. L., Rheol. Acta, 26, 415 (1987).CrossRefGoogle Scholar
  25. (25).
    DiRaddo, R. W., Garcia-Rejon, A., Ryan, M. E., Proc. PPS-10, Akron, Ohio, 307 (1994).Google Scholar
  26. (26).
    Petrie, C., Ito, K., Plastics and Rubber Processing, 68, (1972).Google Scholar
  27. (27).
    Erwin, L., Pollock, M. A., Gonzalez, H., Polym. Eng. Sci., 23, 826 (1985).CrossRefGoogle Scholar
  28. (28).
    Kouba, K., Bartos, O., Vlachopoulos, J., Polym. Eng. Sci., 32, 699 (1992).CrossRefGoogle Scholar
  29. (29).
    Kouba, K., Vlachopoulos, J., SPE ANTEC Tech Papers, 50, 114 (1992).Google Scholar
  30. (30).
    Kouba, K., Ghafur, M. O., Vlachopoulos, J., SPE ANTEC Tech Papers, 51, 1861 (1993).Google Scholar
  31. (31).
    Vlachopoulos, J., Kouba, K., Ghafur, M. O., Proc. PPS-9, Tokyo, Japan, (1993).Google Scholar
  32. (32).
    Kouba, K. , Ghafur, M. O., Vlachopoulos, J., Proc. PPS-10, Akron, Ohio, 311 (1994).Google Scholar
  33. (33).
    Kouba, K., Ghafur, M. O., Vlachopoulos, J., Haessly, W. P., SPE ANTEC Tech Papers, 52, 850 (1994).Google Scholar
  34. (34).
    Vlachopoulos, J., Kouba, K., Ghafur, M. O., Fourth European Rheology Conference — Sevilla, Spain (1994).Google Scholar
  35. (35).
    Koziey, B., Ghafur, M. O., Vlachopoulos, J., Mirza, F. A., “Computer Simulation of Thermoforming”, Chapter 2 in “Thermoplastic Sheet Forming” , Bhattacharyya, D., (ed. ), Elsvier, (to be published) .Google Scholar
  36. (36).
    Taylor, C. A., deLorenzi, H. G., Kazmer, D. O., Polym. Eng. Sci., 32, 1163 (1992).CrossRefGoogle Scholar
  37. (37).
    deLorenzi, H. G., Nied, H. F., Comp. & Structures, 26, 197 (1987).zbMATHCrossRefGoogle Scholar
  38. (38).
    deLorenzi, H. G., Taylor, Intern. Polymer Proc., VIII, 365 (1993).Google Scholar
  39. (39).
    Ryan, M. E., Dutta, A., Polym. Eng. Sci., 22, 1075 (1982).CrossRefGoogle Scholar
  40. (40).
    Dutta, A., Ryan, M. E., Polym. Eng. Sci., 24, 1232 (1984).CrossRefGoogle Scholar
  41. (41).
    Ryan, M. E., Dutta, A., Polym. Eng. Sci., 22, 569 (1982) .CrossRefGoogle Scholar
  42. (42).
    Coleman, B. D., Proc. R. Soc. London, A306, 449 (1968).ADSzbMATHCrossRefGoogle Scholar
  43. (43).
    Wineman, A. S., J. Non-Newtonian Fluid Mech., 4, 249 (1978).zbMATHCrossRefGoogle Scholar
  44. (44).
    Schmidt, F. M., Agassant, J. F., Bellet, M., Eng. Comp., 7, 21 (1990).CrossRefGoogle Scholar
  45. (45).
    Bellet, M., Assaker, D., Mercier, P., Wouters, P., Corsini, P., SPE ANTEC Tech Papers, 50, 132 (1992).Google Scholar
  46. (46).
    Harms, R., Michaeli, W., SPE ANTEC Tech Papers, 50, 142 (1992).Google Scholar
  47. (47).
    Poslinski, A. J., Tsamopoulos, J. A., AIChE Journal, 36, 1837 (1990).CrossRefGoogle Scholar
  48. (48).
    Warner, S. B., J. Appl. Polym. Sci., 29, 219 (1984).CrossRefGoogle Scholar
  49. (49).
    Cakmak, M., White, J. L., Spruiell, J. E., J. Appl. Polym. Sci., 30. 3679 (1985).CrossRefGoogle Scholar
  50. (50).
    Chung, K., J. Mat. Shap. Tech., 7, 229 (1989).CrossRefGoogle Scholar
  51. (51).
    Kanazawa, S., Hoshina, T., Kodama, A., Proc. PPS-9, Tokyo, Japan. (1993).Google Scholar
  52. (52).
    Debbaut, B., Hocq, B., Marchal, J. M., SPE ANTEC Tech Papers, 51, 1870 (1993).Google Scholar
  53. (53).
    Debbaut, B., Hocq, B., Jiang, Y., Marchal, J. M., SPE ANTEC Tech Papers, 52, 1037 (1993).Google Scholar
  54. (54).
    Edward, M. F., Suvanaphen, P. K., Wilkinson, W. L., Polym. Eng. Sci., 19, 910 (1979).CrossRefGoogle Scholar
  55. (55).
    Speuser, G., Michaeli, W., SPE ANTEC Tech Papers, 49, 1453 (1991).Google Scholar
  56. (56).
    Kaneta, T., Imamura, S., Ota, A., Herai, T., Koyama, K., Proc. PPS-10, Akron, Ohio. 294 (1994).Google Scholar
  57. (57).
    Furuya, H., Takatori, H., Ferguson, L. E., SPE ANTEC Tech Papers, 51, 3070 (1993).Google Scholar
  58. (58).
    Schmidt, L. R., Carley, J. F., Int. J. Eng. Sci., 13, 563 (1975).ADSCrossRefGoogle Scholar
  59. (59).
    Schmidt, L. R., Carley, J. F., Polym. Eng. Sci., 15, 51 (1975).CrossRefGoogle Scholar
  60. (60).
    DeVries, A. J., Bonnebat, C., Beautemps, J., J. Poly. Sci. : Polym. Symn., 58, 109 (1977).CrossRefGoogle Scholar
  61. (61).
    Ogden, R. W., Proc. R. Soc. Lond. A., 326, 565, (1972).ADSzbMATHCrossRefGoogle Scholar
  62. (62).
    Bernstein, B., Kearsley, E. A., Zapas, L. J., Trans. Soc. Rheol., VII, 391 (1963).ADSCrossRefGoogle Scholar
  63. (63).
    Tanner, R. I., “Engineering Rheology”, Clarendon Press, Oxford (1985).zbMATHGoogle Scholar
  64. (64).
    Wagner, M. H., Demarmels, A., J. Rheol., 34, 943 (1990).ADSCrossRefGoogle Scholar
  65. (65).
    Burnett, D. S.., “Finite Element Analysis From Concepts to Applications,” Addison-Wesley, Reading, Massachusetts (1987).zbMATHGoogle Scholar
  66. (66).
    Zienkiewicz, O. C., “The Finite Element Method.” McGraw-Hill, London (1977).zbMATHGoogle Scholar
  67. (67).
    Bathe, K. J., “Finite Element Procedures in Engineering Analysis.” Prentice-Hall, Engelwood Cliffs, NJ (1982).Google Scholar
  68. (68).
    Eringen, A. C., “Nonlinear Theory of Continuous Media,” McGraw-Hill, New York, (1962).Google Scholar
  69. (69).
    Irons, B. M., Int. J. Num. Meth. Eng., 2, 5 (1970).ADSzbMATHCrossRefGoogle Scholar
  70. (70).
    Sloan, S. W., Randolph, M. F., Int. J. Num. Meth. Eng., 19, 1153 (1983).zbMATHCrossRefGoogle Scholar
  71. (71).
    Ward, I. M., “Mechanical Properties of Solid Polymers.” 2nd Ed., John Wiley & Sons, New York (1983).Google Scholar
  72. (72).
    Wagner, M. H., J. Rheol., 39, 55 (1978).Google Scholar
  73. (73).
    Kajiwara, T., Barakos, G., Mitsoulis, E., to appear in J. Appl. Polym. Sci. Google Scholar
  74. (74).
    Meissner, J., Polym. Eng. Sci., 27, 537, (1987).CrossRefGoogle Scholar
  75. (75).
    Meissner, J., Raible, T., Stephenson, S. E., J. Rheol., 25, 1. (1981).ADSCrossRefGoogle Scholar
  76. (76).
    Meissner, J., Rheol. Acta, 10, 230 (1971).CrossRefGoogle Scholar
  77. (77).
    Ballman, R. L., Rheol Acta, 4, 1938, (1965).CrossRefGoogle Scholar
  78. (78).
    Stevenson, J. F., Am. Inst. Chem. Eng. J., 18, 540 (1972).CrossRefGoogle Scholar
  79. (79).
    Vinogradov, G. V., Radushkevich, B. V., Fikhman, V. D., J. Poly. Sci., A2, 8, 1 (1970).CrossRefGoogle Scholar
  80. (80).
    White, J. L., Rubber Chem. Technol., 50, 163 (1977).CrossRefGoogle Scholar
  81. (81).
    Halldin, G. W., Lo, Y. C., Polym. Eng. Sci., 25, 323 (1985).CrossRefGoogle Scholar
  82. (82).
    Marquardt, D. W., J. SIAM, 11, 431 (1963).MathSciNetzbMATHGoogle Scholar
  83. (83).
    Hylton, D., SPE ANTEC Tech Papers, 49, 580 (1991).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • M. O. Ghafur
    • 1
  • B. Koziey
    • 1
  • J. Vlachopoulos
    • 2
  1. 1.Polydynamics Inc.HamiltonCanada
  2. 2.CAPPA-D, Dept. of Chem. Eng.McMaster UniversityHamiltonCanada

Personalised recommendations