Advertisement

Polymer Crystallization under Process Conditions

  • H. Janeschitz-Kriegl
Chapter
Part of the NATO ASI Series book series (NSSE, volume 302)

Abstract

First, a description is given of the principles of a correct treatment of the solidification of a crystallizable body in a cooling process. As a second step, a simplified but still realistic model for primary nucleation is presented. According to this model the number of nuclei as a function of crystallization temperature is specified for i-PP and HDPE, both polymers, as rather quickly crystallizing polymers, being of industrial interest, in contrast to slowly crystallizing model polymers. Accessible paths for the determination of spherulitic growth speeds are discussed. Results are given for the above mentioned polymers. The description of the influence of flow on the crystallization kinetics of polymers is reserved for a second paper.

Keywords

Crystallization Temperature Crystallization Kinetic Isothermal Crystallization Growth Speed Increase Cool Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Stefan, “On the Theory of Ice Formation, in particular on the Ice Formation in the Polar Sea”, Ann. Phys. u. Chem. (Wiedermann) N. F. 42, 269 (1891).CrossRefGoogle Scholar
  2. 2.
    H. Janeschitz-Kriegl, “Changing View on the Classical Stefan Problem” in N. A. Peppas (ed.), “One Hundred Years of Chemical Engineering” p 111–124 (1989) Acad. Publ. Kluwer.CrossRefGoogle Scholar
  3. 3.
    G. Eder and H. Janeschitz-Kriegl, “Stefan Problem and Polymer Processing”, Polym. Bull. 11, 93 (1984).CrossRefGoogle Scholar
  4. 4.
    A.W. Kolmogoroff, “On The Statistical Theory of the Crystallization in Metals” (in Russian), Isvestiya Akad. Nauk SSSR, Ser. Math. J 1, 355 (1937).Google Scholar
  5. 5.
    M. Avrami, “Kinetics of Phase Change”, J. Chem. Phys. 7, 1103 (1939), 8, 212 (1940), 9, 177 (1941).ADSCrossRefGoogle Scholar
  6. 6.
    W. Schneider, A. Köppl and J. Berger, “Non-Isothermal Crystallization of Polymers”, Intern. Polym. Processing 2, 151 (1988).Google Scholar
  7. 7.
    G. Eder, H. Janeschitz-Kriegl and S. Liedauer, “Crystallization Processes in Quiescent and Moving Polymer Melts under Heat Transfer Conditions”, Prog. Polym. Sei. 15, 629–714 (1990).CrossRefGoogle Scholar
  8. 8.
    D.W. van Krevelen, Crystallinity of Polymers and the Means to Influence the Crystallization Process”, Chimia 32, 279(1978).Google Scholar
  9. 9.
    L. Mandelkern, “Crystallization of Polymers”, McGraw Hill, New York (1964).Google Scholar
  10. 10.
    J. Boon, G. Challa and D.W. van Krevelen, “Crystallization Kinetics of Isotactic Polystyrene. I. Spherulitic Growth Rate, II. Influence of Thermal History on Number of Nuclei.” J. Polym. Sei. A-2 6, 1791, 1835(1968).CrossRefGoogle Scholar
  11. 11.
    G. Eder; “Fundamentals of Structure Formation in Crystallizing Polymers”, in “Macromolecular Design of Polymeric Materials” Marcel Dekker, New York, K. Hatada, T. Kitayama and O. Vogl, eds., in preparation.Google Scholar
  12. 12.
    J.H. Magill, H.M. Li and A. Gandica, “A Corresponding States Equation for Crystallization Kinetics”, J. Cryst. Growth 19, 361 (1973).ADSCrossRefGoogle Scholar
  13. 13.
    AJ. Lovinger, J.O. Chua and C.C Gryte, “Studies of the α- and β- Form of Isotactic Polypropylene in a Temperature Gradient”, J. Polym. Sei, Polym. Phys. Ed. 15, 641 (1977).ADSCrossRefGoogle Scholar
  14. 14.
    H. Janeschitz-Kriegl, H. Wippel, Ch. Paulik and G. Eder, “Polymer Processing Dynamics, as Reflected by Differential Scanning Calorimetry I. On the Calibration of the Apparatus”, Colloid and Polym. Sei., 271, 1107(1993).CrossRefGoogle Scholar
  15. 15.
    C. H. Wu, G. Eder and H. Janeschitz-Kriegl, “Polymer Processing Dynamics, as Reflected by Differential Scanning Calorimetry II. Numerical Simulations”, Colloid and Polym. Sei., 271, 1116 (1993).CrossRefGoogle Scholar
  16. 16.
    G. Eder and H. Janeschitz-Kriegl, “Heat Transfer and Flow: Transport Phenomena Controlling the Crystallization Processes in Polymers”, proceedings of the first intern, conf on “Transport Phenomena in Processing”, Honolulu, Hawaii, 22–26 march 1992, S.I. Güceri (ed.), Technomic Publ. Corp. 1993, p. 1031.Google Scholar
  17. 17.
    S. Chew, J.R. Griffiths and Z.H. Stachurski, “The Crystallization Kinetics of Polyethylene under Isothermal and Non-Isothermal Conditions”, Polymer 30, 874 (1989).CrossRefGoogle Scholar
  18. 18.
    J.H. Magill, “Crystallization of Poly(tetramethyl-p-silphenylene) — Siloxane (TMPS) Polymers II”, J. Polym. Sei. A 2, 5, 89 (1967).CrossRefGoogle Scholar
  19. 19.
    P.J. Barham, D.A. Jarvis and A. Keller, “A New Look at the Crystallization of Polyethylene. III. Crystallization from the Melt at High Supercoolings”, J. Polym. Sei., Polym. Phys. Ed. 20, 1733 (1982).ADSCrossRefGoogle Scholar
  20. 20.
    N. Billon, J.M. Escleine and J.M. Haudin, “Isothermal Crystallization Kinetics in a Limited Volume”, Colloid and Polym. Sei. 267, 668 (1989).Google Scholar
  21. 21.
    E. Ratajski, “Crystallization Phenomena in Quiescent Polymer Melts” (in German), Doctoral Thesis, Linz Univ., March 1993.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • H. Janeschitz-Kriegl
    • 1
  1. 1.Institute of ChemistryLinz Univ.Austria

Personalised recommendations