Advertisement

Reactive Extrusion

A New Tool for the Diversification of Polymeric Materials
  • Morand Lambla
Chapter
Part of the NATO ASI Series book series (NSSE, volume 302)

Abstract

Reactive extrusion (REX) is a manufacturing method that combines the traditionally separated chemical processes (polymer synthesis and/or modification) and extrusion (melting, blending, structuring, devolatilization and shaping) into a single process carried out onto an extruder. The first reactions of chemical modification of polymers were carried out on natural products, like cellulose nitration by Braconnot in 1833 or natural rubber vulcanization by Goodyear in 1839. Besides these examples based on chemically modified natural macromolecules, it is worthwhile noticing how many possibilities exist for chemically modifying synthetic polymers, as indicated in the exhaustive review published by Fettes (1). Generally, the use of solvents or dispersed media facilitates the control and adjustment of reactivity between polymers and other components of the system. However, the low concentration of polymer (around 10 wt.%) and the related separation and purification processes, which have a great influence on the final costs of modified polymers, are among the main disadvantages of reactions conducted in solvent media. In order to avoid these difficulties, the process using an extruder as a chemical reactor, within a residence time of a few minutes and in the absence of solvent allows to obtain a modified (co)polymer in a ready-to-use form at the dye. The main medium is the molten polymer, with an associated polarity related to its chemical composition, and the corresponding reaction and processing parameters are very different from those in solution. Adjustment of the reactivity requires specific basic research on the kinetical behaviour under these conditions, even if the main reaction is well known in classical organic or polymer chemistry (2).

Keywords

Maleic Anhydride Maleic Anhydride Methyl Acrylate Vinyl Acetate Cyclic Anhydride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.M. Fettes, in “Chemical Reactions of Polymers” ed. H. Mark-Interscience Publishers, New-York, 1964.Google Scholar
  2. 2.
    D.C. Sherrington, “Encycl. of Polymer Science & Engineering”, ed. J.I. Kroschwitz, Wiley, 1988, 14, p.101–169.Google Scholar
  3. 3.
    J. A. Biesenberger and D.H. Sebastian, in “Principles of Polymerisation Engineering” ed.Wiley, New-York, 1983.Google Scholar
  4. 4.
    Z.N. Frund, Plast. Compounding, Sept. Oct. 1986, 9 (5), p. 26–38.Google Scholar
  5. 5.
    S.B. Brown and CM. Orlando, in “Encyclopedia of Polymer Science & Engineering”, ed. J.I. Kroschwitz, Wiley, 1988, 14, p.169–189.Google Scholar
  6. 6.
    S.B. Brown, in “Polymer Blends and Alloys”,ed. A.V. Patsis, State University of New-York, 1990, p. 23–81 & 83–116.Google Scholar
  7. 7.
    C. Tzoganakis, Adv. Polym. Technol., 1989, 9, p.321–330.Google Scholar
  8. 8.
    J.L. White, W. Szydlowski, K. Min and M. Kim, Adv. Polym. Technol., 1987, 7, p. 295–332.CrossRefGoogle Scholar
  9. 9.
    H. Hermann, in “Polymerreaktionen und reaktives Aufbereiten in kontinuierlichen Maschinen”, ed. VDI-Verlag, Düsseldorf, 1988, p.l.Google Scholar
  10. 10.
    R. Sredharan and I.M. Mathai, J. Sei. Ind. Res., 1974, 33, p. 178.Google Scholar
  11. 11.
    D.C. Wahrmund, D.R. Paul and J.W. Barlow, J. Appl. Polym. Sei., 1978, 22, p. 2155–2164.CrossRefGoogle Scholar
  12. 12.
    A.M. Kotliar, J. Polym. Sci.-Macromol. Rev., vol.16, p. 367–395, (1981).CrossRefGoogle Scholar
  13. 13.
    J. Devaux, P. Godard and J.P. Mercier, Polym.Eng. Sei., 1982, 22, p. 229–233.CrossRefGoogle Scholar
  14. 14.
    R. S. Porter, Thermochimica, 1988, 134 (part 1), p. 251.CrossRefGoogle Scholar
  15. 15.
    M. Lambla, J. Druz and F. Mazeres, Plast. Rubber Proces. Appl., 1990, 13, p. 75–79.Google Scholar
  16. 16.
    H. Staudinger, Ber., 1930, 63, p. 931.Google Scholar
  17. 17.
    M. Pike and W.F. Watson, J. Polym. Sei., 1952, 9, p. 229.ADSCrossRefGoogle Scholar
  18. 18.
    W. Kautzmann and H. Eyring, J. Am. Chem. Soc., 1940, 62, p.3113.CrossRefGoogle Scholar
  19. 19.
    N.K. Baremboim, Mechanochemistry of Polymers, 1961.Google Scholar
  20. 20.
    K. Arisawa and R.S. Porter, J. Appl. Polym. Sei., 1970, 14, p. 879–896.CrossRefGoogle Scholar
  21. 21.
    M. Dorn, Adv. Polym. Technol., 1985, 5, p. 87–97.CrossRefGoogle Scholar
  22. 22.
    H. Schott and W.S. Kaghan, Soc. Plast. Eng. Trans., 1963, 3(2), p. 145–151.Google Scholar
  23. 23.
    J. C. Staton, J.P. Keller and R.C. Kowalski (Esso Research & Engineering Co.), FR Pat. 1.547.299, US Pat. 3, 551, 943 (1968).Google Scholar
  24. 24.
    R.C. Kowalski, J.W. Harrison, J.C. Staton and J.P. Keller (Esso Research & Engineering Co.), US. Pat. 3,563,972 & 3, 608, 001 (1971).Google Scholar
  25. 25.
    A.T. Watson, H.L. Wilder, K.W. Bartz and R.A. Steinkamp (Exxon Research and Eng. Co.), DE Pat. 2 454 650 (1975).Google Scholar
  26. 26.
    K. Babba, T. Shiota, K. Murakami and K. Ono (Sumitomo Chemical Co.) JPPat. 48/79 851 (1973).Google Scholar
  27. 27.
    D. Suwanda, R. Lew and S.T. Blake, J. Appl. Polym. Sei., 1988, 35, p.1019–1032.CrossRefGoogle Scholar
  28. 28.
    C. Tzoganakis, J. Vlachopoulos and A. E. Hamielec, Polym. Eng. Sei., 1988, 28, p. 170–180CrossRefGoogle Scholar
  29. 28a.
    C. Tzoganakis, J. Vlachopoulos and A. E. Hamielec, Chem. Eng. Prog., Nov. 1988, 84(11), p. 47–49.Google Scholar
  30. 29.
    C. Tzoganakis, Y. Tang, J. Vlachopoulos and A.E. Hamielec, Polym. Plast. Technol. Eng., 1989, 28, p. 319–350.CrossRefGoogle Scholar
  31. 30.
    A. Pabedinskas, W.R. Cluett and S.T. Balke, Polym. Eng. Sei., 1989, 29, p. 993–1003.CrossRefGoogle Scholar
  32. 31.
    H.G. Scott (Midland Silicones), FR Pat. 2.030.899 (1970).Google Scholar
  33. 32.
    H.G. Scott and J.F. Humphries, Mod. Plast., 1973, 50(3), p. 82–87.Google Scholar
  34. 33.
    B.LC.C. Ltd. and Maillefer S.A., NL Pat. 75/14 222, US Pat. 4, 117, 195 (1976).Google Scholar
  35. 34.
    S. Ultsch and H.G. Fritz, Plast. Rubber Proces. AppL, 1990, 13, p. 81–91.Google Scholar
  36. 35.
    Fujikura Cable Work Ltd., JP Pat. 60/6045 (1985).Google Scholar
  37. 36.
    S. Ultsch and H.G. Fritz, Kunststoffe, 1989, 79, p. 1051–56Google Scholar
  38. 37.
    N.G. Gaylord and R. Mehta, J. Polym. Sei. -Polym. Chem. Ed., 1988, 26, p. 1189–1198 & 1903–1909.CrossRefGoogle Scholar
  39. 38.
    J.J. Hat, Thèse de Doctorat, Univ. de Strasbourg I, (1989)Google Scholar
  40. 39.
    G.-H. Hu, J.J. Fiat & M. Lambla, Makromol. Chem., Macromol. Symp., 1993, 79, p.137–157.CrossRefGoogle Scholar
  41. 40.
    G.-H. Hu, JJ. Fiat & M. Lambla, “S.P.E. Proc. ANTEC” (1994)Google Scholar
  42. 41.
    Y. J. Sun, G.-H. Hu and M. Lambla; Accepted by “Die Angew. Makromol. Chem.”Google Scholar
  43. 42.
    R. C. Kowalski and N.F. Newman (Exxon Research & Eng.Co.) EP Pat.76 173, US Pat.4,384,072 + 4,486,575 + 4,501,859 (1983) & EP Pat. 124 278, US Pat.4,548,995 (1984) & EP Pat. 124 279 (1984).Google Scholar
  44. 43.
    N.F. Newman and R.C. Kowalski (Exxon Research & Eng. Co.), BR Pat. 83/1 822 (1984),(Chem. Abstr. 101–172842).Google Scholar
  45. 44.
    C. Mijangos, A. Martinez and A. Michel, Europ. Polym. J., 1986, 22, p. 417–421.CrossRefGoogle Scholar
  46. 45.
    K. Mori, Y. Nakamura and T. Hayakari, Angew. Makromol. Chem., 1978, 66,Google Scholar
  47. p. 169–180.Google Scholar
  48. 46.
    A. Michel, M. Gonnu and E. Koerper, Polymer Processing Society, 3rd Ann. Meet., Abs. 1/9, Stuttgart, 1987.Google Scholar
  49. 47.
    C. Song, K. Li and S. Li, Intl. Polym. Process., 1987, 2, p. 83–87.Google Scholar
  50. 48.
    J. A. Sneller, Modern Plast. Int’l, Aug. 1985, 15(8), p. 42–46.Google Scholar
  51. 49.
    Modern Plast. Int’l, Apr. 1987, 17(4), p. 27–30.Google Scholar
  52. 50.
    CS. Tucker and R.J. Nichols, Plast. Eng., May 1987, 43(5), p. 27–30.Google Scholar
  53. 51.
    M. Lambla, Polym. Process Eng., 1988, 5, p. 297–315.Google Scholar
  54. 52.
    R. M. Kopchik (Rohm and Haas Co.), DE Pat. 2 652 118, US Pat. 4,246,374 (1977)Google Scholar
  55. 53.
    Toray Industries Inc., JP Pat. 58/84855 (1983).Google Scholar
  56. 54.
    M.P. Hallden-Abberton, N.M. Bortnick, L.A. Cohen, W.T. Freed and H.C. Formuth (Rohm and Haas Co.), EP. Pat. 216 505, US Pat. 4,727,117 (1987).Google Scholar
  57. 55.
    O. Koch and H. Waniczek (Bayer AG.), DE. Pat. 3430802 (1986)Google Scholar
  58. 56.
    L. G. Bourland, M.E. London and T.A. Cooper, in “Reactive Processing: Practice and Possibilities” RAPRA Seminar, 1989Google Scholar
  59. 57.
    M. Raetzsch, U. Hofmann, M. Gebauer, G. Hoffmann, G. Bergmann and H. Schade (VEB), BR Pat. 2,116,981 (1983).Google Scholar
  60. 58.
    R.L. Saxton (du Pont), US Pat. 4,338,405 (1982).Google Scholar
  61. 59.
    T. Kumimoto, M. Morikawa, K. Aoki and Y. Urata (Toray Industries Inc.), JP Pat. 47/30932 (1972).Google Scholar
  62. 60.
    M. Raetzsch, J. Geyer and J. Oswald, DD Pat. 107,938 (1974).Google Scholar
  63. 61.
    D.M. McClain, B.L. Vest (National Distillers & Chemical Corp.), US Pat. 3,972,865 (1976).Google Scholar
  64. 62.
    A. Bouilloux, J. Druz and M. Lambla, Polym. Proces. Eng., 1986, 4, p. 235–251.Google Scholar
  65. 63.
    M. Lambla, J. Druz and A. Bouilloux, Polym. Eng. Sei., 1987, 27, p. 1221–1228.CrossRefGoogle Scholar
  66. 64.
    G.-H. Hu, Y.-J. Sun and M. Lambla, Makromol. Chem., 1993, 194, p. 665–675.CrossRefGoogle Scholar
  67. 65.
    G.-H. Hu and M. Lambla, Polymer, 35, 1994, 3082.CrossRefGoogle Scholar
  68. 66.
    G.-H. Hu, Y. Holl and M. Lambla, J. Polym. Sei., A, 1992, 30, p.625–634.CrossRefGoogle Scholar
  69. 67.
    G.-H. Hu, S. Lorek, Y. Holl and M. Lambla, J. Polym. Sei. A, 1992, 30, p.635–641.Google Scholar
  70. 68.
    G.-H. Hu, Ph. D. Dissertation, Université Louis Pasteur, Strasbourg France, 1990.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • Morand Lambla
    • 1
  1. 1.Ecole d’Application des Hauts PolymèresInstitut Charles Sadron (C.R.M.-E.A.H.P.)StrasbourgFrance

Personalised recommendations