Linear Viscoelasticity

The Search for Patterns in the Relaxation of Polymer Melts and Gels
  • Horst Henning Winter
  • Judy Jackson
Part of the NATO ASI Series book series (NSSE, volume 302)


The linear viscoelasticity of a polymer is uniquely described by the classical theory of linear viscoelasticity. Material properties are contained in the relaxation time spectrum which depends on the molecular details. To address an unsolved problem in rheology, the search for relations between molecular architecture and relaxation, we propose to start out with the most simple molecular architecture and later add molecular details. This proposal bases on the observation that polymers with the mostt simple geometry (long linear flexible chains of uniform length) relax with a universal relaxation time spectrum which is self-similar. Its parameters are a generic expression of chain flexibility, rotational energies of the chemical bonds, atomic masses involved in the molecular motion, molecular interaction forces, etc. of the chemical building blocks. We assume that these generic parameters can be considered fixed for each chemistry and that only few new parameters have to be added when proceeding to architectures which are branched or distributed in size (polydisperse). In a similar fashion one may add specific effects of solvents, molecular interactions, or phase transition (not elaborated here). Generic parameters are given for polystyrene, a polybutadiene, and a polyvinylmethylether.


Relaxation Modulus Relaxation Mode Linear Viscoelasticity Longe Relaxation Time Small Amplitude Oscillatory Shear 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antonietti M, Fölsch KJ, Sillescu H, Pakula T (1989) Micronetworks by endlinking of polystyrene II: dynamic mechanical behavior and diffusion experiments in bulk. Macromolecules 22, 2812ADSCrossRefGoogle Scholar
  2. Bates FS (1984) Block copolymer near the microphase separation transition: linear dynamic mechanical properties, Macromolecules 17, 2607ADSCrossRefGoogle Scholar
  3. Baumgärtel M, De Rosa M, Machado J, Masse M, Winter HH (1992) The relaxation time spectrum of nearly monodisperse polybutadiene melts, Rheol. Acta 31, 75CrossRefGoogle Scholar
  4. Baumgärtel M, Schausberger A,Winter HH (1990) The relaxation of polymers with linear flexible chains of uniform length Rheol. Acta 29, 400CrossRefGoogle Scholar
  5. Baumgärtel M, Winter HH (1989) Determination of the discrete relaxation time spectrum from dynamic mechanical data Rheol. Acta 28, 511CrossRefGoogle Scholar
  6. Baumgärtel M, Winter HH (1992) Interrelation between continuous and discrete relaxation time spectra, J. Non-Newtonian Fluid Mech. 44, 15–36CrossRefGoogle Scholar
  7. Bird RB, Armstrong R, Hassager O, Curtiss CF (1987) Dynamics of Polymeric Liquids, Vol. 2, J. Wiley, New YorkGoogle Scholar
  8. Cates ME (1985) Brownian dynamics of self-similar macromolecules, J. de Physique 46, 1059–1077MathSciNetCrossRefGoogle Scholar
  9. Chambon F, Winter HH (1985) Stopping of the crosslinking reaction in a PDMS polymer at the gel point Polym. Bull. 13, 499CrossRefGoogle Scholar
  10. Chung CI and Gale JC (1976) Newtonian behavior of a SBS block copolymer, J. Polym. Sci., Polym. Phys. Ed. 14, 1149ADSCrossRefGoogle Scholar
  11. Chung CI, Lin MI (1978) Nature of melt rheological transition in SBS copolymers J. Polym. Sci., Polym. Phys. Ed. 16, 545ADSCrossRefGoogle Scholar
  12. de Gennes PG (1979) Scaling Concepts in Polymer Physics, Cornell University Press, IthacaGoogle Scholar
  13. des Cloizeaux J (1990) Relaxation and viscosity anomaly of long entangled polymers: time dependent relaxation, Macromolecules 23, 4678–4687ADSCrossRefGoogle Scholar
  14. Doi M (1974) Molecular theory of the viscoelastic properties of concentrated polymer solutions, Chem. Phys. Lett. 26, 269–272ADSCrossRefGoogle Scholar
  15. Doi M, Edwards SF (1986) The Theory of Polymer Dynamics Clarendon Press, OxfordGoogle Scholar
  16. Emri I, Tschoegl NW (1994) Generating line spectra from experimental responses Rheologica Acta 32, 311–327CrossRefGoogle Scholar
  17. Ferry JD (1980) Viscoelastic Properties of Polymers. 3rd ed. Wiley, New YorkGoogle Scholar
  18. Gouinlock EV, Porter RS (1977) Linear dynamic mechanical properties of an SBS block copolymer, Polym. Eng. Sci. 17, 535CrossRefGoogle Scholar
  19. Graessley WW (1974) The entanglement concept in rheology Adv. Polym. Sci. 16, Springer Verlag HeidelbergGoogle Scholar
  20. Graessley WW, Roovers J (1979) Melt rheology of four-arm and six-arm star polystyrenes, Macromolecules 12, 959ADSCrossRefGoogle Scholar
  21. Granick S, Reiter G, Demirel L, Cai L, Reanasky J (1993) Presentation at 2nd Int. Discussion Meeting on Relaxation in Complex Systems, 28/6–8/7/93, Alicante, Spain.Google Scholar
  22. Gross B (1953) Mathematical structure of the theories of viscoelasticity, Hermann and Cie, PariszbMATHGoogle Scholar
  23. Honerkamp J, Weese J (1989) Determination of the relaxation spectrum by a regularization mehtod, Macromolecules 22, 4372–4377ADSCrossRefGoogle Scholar
  24. Jackson J, De Rosa M, Winter HH (1994) Molecular weight dependence of relaxation time spectra for the entanglement and flow behavior of monodisperse linear flexible polymers, Macromolecules 27, 2426ADSCrossRefGoogle Scholar
  25. Jackson J, Winter HH (1994) Entanglement and flow behavior of bidisperse blends of polystyrene and polybutadiene Macromolecules under reviewGoogle Scholar
  26. Kamath VM, Mackley MR (1990) The determination of polymer relaxation moduli and memory functions using integral transforms, J. Non-Newt. Fluid Mech. 32, 119–144CrossRefGoogle Scholar
  27. Kimura S, Osaki K, Kurata M(1981) J. Rheology 32, 151Google Scholar
  28. Koppi KA, Tirrell M, Bates FS, Almdal K, Colby RH (1992) Lamellae orientation in dynamically sheared diblock copolymer melts. J. Phys. II France 2, 1941:1959Google Scholar
  29. Kurata M, Osaki K, Einaga Y, Sugie T (1974) Effect of molecular weight distribution on viscoelastic properties of polymers J. Polym. Sci., Polym. Phys Ed. 12, 849ADSCrossRefGoogle Scholar
  30. Larson RG, (1985) Constitutive relations for polymeric materials with power law distributions of relaxation times. Rheol. Acta 24, 327–334;CrossRefGoogle Scholar
  31. Laun HM (1978) Description of non-linear shear behavior of a low density polyethylene melt by means of an experimentally determined strain-dependent memory function, Rheologica Acta 17, 1–15CrossRefGoogle Scholar
  32. Mani S, Malone MF, Winter HH (1992) Influence of phase separation on the linear viscoelastic behavior of a miscible polymer blend J. Rheology 36, 1625ADSCrossRefGoogle Scholar
  33. Marin G, Graessley WW (1977) Viscoelastic properties of high molecular weight polymersin the molten state. I. Study of Marrow Molecular weight distribution samples Rheol. Acta 16, 527CrossRefGoogle Scholar
  34. Mead DW (1994) Numerical interconversion of linear viscoelastic material functions. J. Rheology 38, 1769–1795ADSCrossRefGoogle Scholar
  35. Muthukumar M (1985) J. Chem. Phys. 83, 3161ADSCrossRefGoogle Scholar
  36. Onogi S, Masuda T, Kitagawa K (1970) Rheological properties of anionic polystyrenes. I. Dynamic viscoelasticity of narrow-distributed polystyrenes, Macromolecules 3, 109ADSCrossRefGoogle Scholar
  37. Pipkin AC (1986) Lectures on Viscoelasticity Theory, 2nd Ed., Springer Verlag, HeidelbergCrossRefGoogle Scholar
  38. Plazek DJ (1960) Dynamic mechanical and creep properties of a 23% cellulose nitrate solution; Andrade creep in polymeric systems, J. Colloid Sci. 15, 50–75CrossRefGoogle Scholar
  39. Plazek DJ (1966) J. Polymer Sci. A-2, 745Google Scholar
  40. Plazek DJ, Tan V, O’Rourke VM (1964) Rheol. Acta 13, 367CrossRefGoogle Scholar
  41. Prest W, Porter R (1973) The effects of high-molecular components on the viscoelastic properties of polystyrene, Polym. J. 4, 154CrossRefGoogle Scholar
  42. Roovers J, Graessley WW (1981) Macromolecules 14, 766ADSCrossRefGoogle Scholar
  43. Rouse PE (1953) A theory of linear viscoelastic properties of dilute solutions of coiling polymers, J. Chem. Phys. 21, 1272–1280ADSCrossRefGoogle Scholar
  44. Rubinstein M, Zurek S, McLeish TCB, Ball RC (1990) Relaxation of entangled polymers at the classical gel point, J. Phys. France 51, 757–775CrossRefGoogle Scholar
  45. Schausberger A, Schindlauer G, Janeschitz-Kriegl H (1985) Linear elasticovisvous properties of molten standard polystyrenes. I. Presentation of Complex moduli; role of short range structural parameters Rheol. Acta 24, 220CrossRefGoogle Scholar
  46. Stadler R, Freitas LL, Krieger V, Klotz S (1988) Polymer 29, 1643CrossRefGoogle Scholar
  47. Tobolsky AV (1960) Properties and Structures of Polymers, Wiley New YorkGoogle Scholar
  48. Tobolsky AV, McLoughlin JR (1952) J. Polym Sci. 8, 543ADSCrossRefGoogle Scholar
  49. Winter HH (1987) Evolution of rheology during chemical gelation, Progr. Coll. Polym. Sci. 75, 104CrossRefGoogle Scholar
  50. Winter HH (1994) The occurrence of self-similar relaxation in polymers J. Non Crystalline Solids 172–174, 1158–1167CrossRefGoogle Scholar
  51. Winter HH, Baumgärtel M, Soskey P (1993) A parsimonious model for viscoelastic liquids and solids, in A. A. Collyer, Ed. Techniques in Rheological Measurement, Chapman & Hall, LondonGoogle Scholar
  52. Winter HH, Chambon F (1986) Analysis of linear viscoelasticity of a crosslinking polymer at the gel point J. Rheology 30, 367ADSCrossRefGoogle Scholar
  53. Winter HH, Izuka A, De Rosa ME (1994) Experimental observation of the molecular weight dependence of the critical exponents for the rheology near the gel point, Polymer Gels and Networks 2, 239–245CrossRefGoogle Scholar
  54. Zimm BH (1956) Dynamics of polymer molecules in dilute solution: viscoelasticity, flow birefringence and dielectric loss. J. Chem. Phys. 24, 269–278MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • Horst Henning Winter
    • 1
  • Judy Jackson
    • 1
  1. 1.Dept. of Chemical Engineering and Dept. of Polymer Science and EngineeringUniversity of MassachusettsAmherstUSA

Personalised recommendations